
SMAClite: A Lightweight Environment for Multi-Agent
Reinforcement Learning

Adam Michalski
University of Edinburgh

Edinburgh, United Kingdom
contact@adammi.ch

Filippos Christianos
University of Edinburgh

Edinburgh, United Kingdom
f.christianos@ed.ac.uk

Stefano V. Albrecht
University of Edinburgh

Edinburgh, United Kingdom
s.albrecht@ed.ac.uk

ABSTRACT
There is a lack of standard benchmarks for Multi-Agent Reinforce-
ment Learning (MARL) algorithms. The Starcraft Multi-Agent Chal-
lenge (SMAC) has been widely used in MARL research, but is built
on top of a heavy, closed-source computer game, StarCraft II. Thus,
SMAC is computationally expensive and requires knowledge and
the use of proprietary tools specific to the game for any meaning-
ful alteration or contribution to the environment. We introduce
SMAClite – a challenge based on SMAC that is both decoupled
from Starcraft II and open-source, along with a framework which
makes it possible to create new content for SMAClite without any
special knowledge. We conduct experiments to show that SMAClite
is equivalent to SMAC, by training MARL algorithms on SMAClite
and reproducing SMAC results. We then show that SMAClite out-
performs SMAC in both runtime speed and memory.

KEYWORDS
Multi-agent Reinforcement Learning, Starcraft, Strategy, Game

1 INTRODUCTION
As we continue to make advancements in artificial intelligence
research, it inevitably makes its way into our daily lives. Examples
of autonomous agents popular in recent times range from robotic
vacuum cleaners (e.g. [30]) and self-driving cars (e.g. [2]) to robots
making lives easier from behind the scenes, such as warehouse
optimization robots (e.g. [15]). With all this attention in research,
a natural need arises for standardized benchmarks for the various
types of artificial intelligence (AI) models.

Multi-agent reinforcement learning (MARL) is a branch of ma-
chine learning dealing with multiple autonomous AI entities – usu-
ally called agents – existing in the same environment. In this work,
we are interested in cooperative agents, ones that work together to
accomplish some goal. Crucially, there is currently no consensus in
the research community about what a standard benchmark for this
type of agent should be. Just by looking at a recent benchmarking
paper [20] we can count five different benchmarking environments.

The Starcraft Multi-Agent Challenge (SMAC) [24] has been
widely used in MARL research. It is built on top of a real-time
strategy computer game Starcraft II (SC2) and makes use of an API
– an interface between the game and the AI agents – made available
by Vinyals et al. [32]. It presents a mini-game where each agent
controls a single combat unit (e.g. a single soldier) in one of several
available battle scenarios against an enemy team controlled by the
game’s built-in AI. SMAC presents a challenge where the solution
is not straightforward – in most of the scenarios the most obvious
strategy of running forward and attacking is not good enough and

will result in a quick loss due to the enemy army having better
units or more numbers.

While the idea is promising, we can spot several problems with
SMAC if it is to become a universally accepted benchmark. The
biggest issue we see is that SMAC uses SC2 as its key dependency,
requiring a large-sized (ca. 3.7 GB) download and a complicated
setup process for any training or inference, not to mention running
SC2 alongside SMAC at all times, consuming extra CPU and mem-
ory resources. This is made worse by the fact that SMAC uses only
a subset of the SC2 features – a lot of the required downloadable
and computational resources are simply redundant, and due to that
training agents on SMAC is more expensive than necessary for the
task it offers.

On top of that, it remains highly inaccessible for people unfamil-
iar with the game it is based in. This manifests in many ways, e.g.
to create custom scenarios or units for SMAC, one is required to
use the official Starcraft II map editor, requiring people to learn an
unusual and proprietary tool, and put in a lot of effort for a single
benchmark.

We present a challenge very similar to SMAC, but completely
decoupled from the Starcraft II dependency, and show that it pre-
serves the challenging aspects of SMAC. We name this challenge
Starcraft Multi-Agent Challenge lite (SMAClite). We also want to
make the battle scenarios and units as easy to modify as possible
– also allowing easy creation of completely new ones. Our envi-
ronment preserves the outer interface of SMAC, only changing
the inner workings, in order to allow AI developers to reuse their
code for handling SMAC with minimal modifications. We make
this environment open-source1 and free to use.

We perform a series of experiments using models trained on
SMAClite. Our experiments include quantitative analysis by com-
paring the return achieved by variousMARL algorithms in SMAClite
– we show that the algorithms achieve similar returns as on SMAC
and that the relative ranking among them is preserved from SMAC.
We also perform qualitative analysis – looking at the combat strate-
gies employed by the agents on a case-by-case basis, and verifying
they do indeed outsmart the handwritten enemy AI. On top of that,
we take the models trained on SMAClite, and put them inside the
original SMAC environment without any further training, to see
how much potential for transfer learning there is between the envi-
ronments – from this experiment, we conclude that training agents
on SMAClite improves the returns achieved by them on SMAC, and
therefore the challenges require similar skills.

1https://github.com/uoe-agents/smaclite

https://github.com/uoe-agents/smaclite

2 RELATEDWORK
Popular benchmarks, accepted by the research community as the
standard, do exist for the single-agent variant of reinforcement
learning [5, 22]. The authors of the MARL benchmark paper [20]
make available two MARL benchmarks, both based in simple 2D
worlds: Level-Based Foraging, and Multi-Robot Warehouse. There
are also several other non-Starcraft II multi-agent benchmarks,
such as the Multi-Agent Particle Environment [19], or the Hanabi
challenge [3]. Another multi-agent challenge based on a modern
computer game is the OpenAI Five project [7], which put agents
inside a full five versus five matches of the strategy game Dota 2,
showing the impressive scale of the game and the trained models.

Training autonomous agents in Starcraft II started becoming
popular upon the publication of its API [32], with one of the popular
results being the AlphaStar model [31]. Our work is mostly based
on the work of the creators of SMAC [24]. Since its publication,
SMAC has been used as a benchmark for autonomous agents in
numerous works (e.g. [20, 23, 33]), with its popularity being a sign
that it does fill a niche.

There are several projects that are tangentially related to ours
since they also aim to improve SMAC but take different approaches
(e.g. SMACv2 [9], SMAC+ [14]). These projects present interest-
ing additions to the SMAC paradigm, however, to our knowledge,
none of them address the issues we wish to tackle: the environ-
ment’s performance cost, and its closed-source nature. We believe
the additions introduced by them are good ideas for the future de-
velopment of SMAClite, but the scope of our project is to maintain
the challenge’s difficulty on the same level as the original.

3 BACKGROUND
3.1 Multi-Agent Reinforcement Learning
Multi-Agent Reinforcement learning (MARL) allows for multiple
autonomous agents to coexist in the same space. Formally, the setup
of MARL consists of several agents that can perform specific ac-
tions, and the environment – a term that encompasses everything
outside of the agents, that the agents can interact with. The specific
formalisation of MARL that we use in our work is called Decen-
tralized Partially Observable Markov Decision Problems (in
short: Dec-POMDPs).

A Dec-POMDP is a cooperative process defined as a 7-element tu-
ple (N ,S,A,O,Ω,P,R), where N = {1 . . . 𝑁 } is the set of agents
participating in the process. Agents interact with the environment
in discrete timesteps 𝑡 ∈ N. In each timestep 𝑡 the environment has
some true active state 𝑠𝑡 ∈ S, and each agent 𝑖 receives an obser-
vation 𝑜𝑖𝑡 ∼ Ω(𝑖, 𝑠𝑡), 𝑜𝑖𝑡 ∈ O. Each agent 𝑖 then selects an action
𝑎𝑖𝑡 ∈ A. After each timestep 𝑡 the agents receive a shared reward
R(𝑎1𝑡 , 𝑎2𝑡 , . . . , 𝑎𝑁𝑡 , 𝑠𝑡) = 𝑟𝑡+1 ∈ R, and the environment enters the
next state 𝑠𝑡+1 ∼ P(𝑎1𝑡 , 𝑎2𝑡 , . . . , 𝑎𝑁𝑡 , 𝑠𝑡), 𝑠𝑡+1 ∈ S.

In a Dec-POMDP, like in reinforcement learning in general, the
agents’ goal at each point in time 𝑡 is to maximize the discounted
cumulative reward (or the return)

∑∞
𝑖=0 𝛾

𝑖𝑟𝑡+𝑖 , where 𝛾 is a discount
factor. When 𝛾 = 1, the discounted return is equal to the actual
return

∑
𝑡 𝑟𝑡 – we will report this sum when presenting evaluation

results.

For the purpose of training and evaluating agents in the SMAClite
environment, we will use the same set of algorithms, as well as their
hyperparameters, that was used to test agents in SMAC in a recent
MARL benchmark paper [20]. This includes 9 popular algorithms
that can be used to solve various SMAC scenarios: IQL [28], IA2C
[18], IPPO [25], MADDPG [17], COMA [10], MAA2C [20], MAPPO
[33], VDN [27], and QMIX [23].

3.2 SMAC
3.2.1 Overview. In this section, we go over the SMAC environ-
ment to the extent that is relevant to our project. Our project only
replicates SMAC in its default configuration, omitting any optional
parameters, so we omit those here as well.

In SMAC, each agent controls one unit (we refer to units con-
trolled by agents as allied units throughout this paper) and is tasked
with defeating a group of enemy units controlled by Starcraft II’s
built-in AI opponent. SMAC defines several combat scenarios, dif-
fering in army compositions and terrain layout, and as result, in
difficulty. We include visualizations of two SMAC scenarios in Fig-
ure 1.

Units are divided into several types with different attributes
(health, attack, etc.) – but note that the SMAC environment only
makes a distinction between unit types in the state/observation
vectors if there is more than 1 unit type within a single team in the
scenario – we will refer to this as the scenario "distinguishing unit
types".

Some unit types, once hit, do not regenerate health in any way.
Other units have innate health regeneration that is always active.
Yet another group of unit types has special shields on top of their
health points that regenerate after a period of not taking damage,
and the shields have to be brought down to 0 before the units’
health can be hit. Due to the limitations of Starcraft II, either all
units in a team possess shields or none of them.

3.2.2 Actions. Each agent has access to several actions, which may
or may not be available at any given timestep – the environment
exposes a method to get currently available actions for each agent.
If an unavailable action is chosen by the agent, SMAC raises an
error and ceases execution. The possible actions are no-op – which
has no effect and is only available to dead units, stop – orders the
unit to stop in its place and do nothing, moveN, moveE, moveS, and
moveW – orders the unit to move in the chosen cardinal direction
(north, east, south, or west), target1, target2, . . . – orders the unit
to target the unit with the specified team-specific ID – for damage-
dealing units, this refers to targeting enemy units to attack, for
healing units, to targeting allies to heal. SMAC defines a constant
targeting range for agents, and this action is unavailable if the target
is outside of this range.

3.2.3 State. The true state of the environment is a vector divided
into three sections. The first section contains each ally unit in order
of their IDs: its current health, its current cooldown, its X and Y
coordinates (relative to the centre of the map), its current shields
(only if allies have shields), and a one-hot vector representing its
unit type (only if scenario distinguishes unit types). The second
section contains each enemy unit in order of their IDs: its current
health, its X and Y coordinates (relative to the centre of the map),

Figure 1: Visualizations of the SMAC environment. (left) The corridor scenario. (right) The MMM2 scenario.

its current shields (only if enemies have shields), and a one-hot
vector representing its unit type (only if the scenario distinguishes
unit types). The final section contains each agent in order of their
IDs: a one-hot vector representing the action taken by them in the
previous timestep. Note that all features within the state vector are
normalized to be between zero and one – for example, the health
value is divided by the maximum health value of the given unit.

3.2.4 Observations. Each agent, in each time-step, receives an ob-
servation representing what is visible to the agent within the en-
vironment. SMAC defines a constant sight range for agents – if a
unit is dead, or is further from the agents’ own unit than this sight
range, any information in the observation vector about this unit
is completely zeroed out. The observation vector is divided into
four sections. The first section includes, for each cardinal direction,
whether the movement is possible in that direction. The second
section includes, for each enemy unit, if it is alive: whether the
agent’s unit can attack it, its distance to the agent’s unit, its X and
Y coordinates relative to the agent’s unit, its health, its shields (only
if enemies have shields), and a one-hot vector representing its unit
type (only if the scenario distinguishes unit types). The third sec-
tion includes, for each ally unit: a literal 1 (to distinguish from units
that are dead or too far), its distance to the agent’s unit, its X and Y
coordinates relative to the agent’s unit, its health, its shields (only
if allies have shields), and a one-hot vector representing its unit
type (only if the scenario distinguishes unit types). The final section
includes, for the agent’s own unit: its health, its shields (only if
allies have shields), and a one-hot vector representing its unit type
(only if the scenario distinguishes unit types). Note that, similarly
to the state features, all observation features are normalized to be
between zero and one.

3.2.5 Rewards. After each time-step all agents receive a shared
reward equal to the sum of health points and shield points removed
from enemies in that timestep. A small bonus of 10 is added for
each eliminated enemy unit and a bigger bonus of 200 is added
for winning the scenario. The reward is normalized by dividing
it by the sum of all health and shield points of enemy units and
any possible bonuses, and multiplying by 20 – thus, the possible
returns should be between zero and twenty. Do note, however, that
the actual cumulative reward received by the agents by the end of
an episode might exceed 20 due to health and shield regeneration.

3.3 Optimal Reciprocal Collision Avoidance
In Starcraft II, units move around the battlefield populated by other
units and avoid collision by stepping to the side if they would get
in the way of another unit. This makes the battlefield feel more
realistic and physical and allows for some advanced strategies like
body-blocking or surrounding (in essence, limiting other units’
movement by positioning oneself strategically). We felt it was cru-
cial to reproduce this behaviour in our environment. However,
because Starcraft II is a proprietary, closed-source piece of soft-
ware, we cannot use the exact algorithms used in SMAC. To fill this
gap we chose the Optimal Reciprocal Collision Avoidance (ORCA)
algorithm by Berg et al. [6].

The ORCA algorithm fills several criteria desirable for our en-
vironment. Much like in SC2, each unit is assumed to be a circle
with a specific radius. Units can avoid other units, and they can also
avoid static polygonal obstacles. On top of that, the units can not
only avoid collisions but also move towards their own goal location
at the same time.

The algorithm is parametrized by a time horizon 𝜏 . In each run
of this algorithm, each unit 𝐴 computes a set of half-planes (which
we call ORCA half-planes) in 2D velocity space, each half-plane
being the set of velocities safe to choose to avoid collision with
some other unit or obstacle 𝐵 for at least 𝜏 time.

Each unit 𝐴 considers all units and obstacles in its immediate
neighbourhood (i.e. within some radius 𝑟 around it). For each neigh-
bour 𝐵, the unit calculates the velocity obstacle induced by the
neighbour on it – that is, the set of positions in velocity space
that would make the unit collide (for units: get within the distance
of 𝑟𝐴 + 𝑟𝐵 , where 𝑟𝐴 and 𝑟𝐵 are the units’ own radii) with that
neighbour within 𝜏 time.

Let u be the shortest vector from the relative velocity v𝐴 − v𝐵
to the velocity obstacle’s boundary – in other words, the smallest
amount of change to the relative velocity required to prevent a
collision within 𝜏 time. Then, the slope of the line (called the ORCA
line) defining the ORCA half-plane for that neighbour is given by
the slope of the outward normal of the velocity obstacle boundary
at point v𝐴 − v𝐵 + u. The line is anchored in a point given by
v𝐴 + 1

2u. This gives the unit a half-plane of possible velocities that
will avoid collision with the neighbour – note that the adjustment
by 1

2u is because the unit assumes the neighbour is following the
same algorithm and will adjust by − 1

2u (since from the neighbour’s

perspective, everything is mirrored – hence the negation) – the
adjustment is not halved for obstacle neighbours, only for unit
neighbours.

Then, given all half-planes induced by neighbours, the algorithm
solves a linear programming problem for each unit, to find a ve-
locity that avoids all neighbours and is the closest to the unit’s
desired velocity. If avoiding collisions completely is not possible,
the algorithm solves a different linear programming problem that
minimizes the distance the unit crosses behind the ORCA lines.

We go into more detail about how we use this algorithm in
SMAClite in Section 4. Note that this algorithm is not equivalent to
a pathfinding algorithm – when faced with a wall, the units will
often stop in front of it, and they will not look very far for a way to
go around it.

4 SMACLITE
4.1 Environment implementation
In this section, we focus on our contribution and how we ap-
proached implementing SMAClite. Note that because of the closed-
source nature of Starcraft II, we did not have access to any imple-
mentation details of it, algorithms contained in this section were
designed with our knowledge of the game and with trial and error
experiments, while also using some general information available
on the Starcraft II Liquipedia [16].

We decided to implement the environment in the Python pro-
gramming language [29] due to it being widely known in the ma-
chine learning community, where it is by far the most popular one.
Most of the computations within the environment are performed
using the Numpy library [12], and the rendering of the environ-
ment is handled by a script written by us using the Pygame [1]
library. Wherever applicable, we used the default arguments of the
SMAC environment and omitted any optional ones. The SMAClite
environment uses the well-established OpenAI Gym framework
[8] for creating reinforcement learning environments. We include
visualizations of two scenarios within the environment in Figure 22.

At all steps of the implementation, we made sure the action,
state, observation, and reward APIs are exactly aligned with SMAC.
This also applies to individual unit attributes, for which we con-
sulted Liquipedia [16]. This allowed us to conduct transfer learning
experiments, such as the one we describe in Section 5.3.

Even though the map grid in Starcraft II allows triangles within
the unitary squares, we chose for simplicity to only allow a grid of
squares as the terrain for SMAClite. We found that this simplify-
ing assumption does not detract from the environment’s difficulty.
Internally, we collapse adjacent squares containing obstacles into
rectangles to lower the total number of obstacles for performance’s
sake. When defining the units’ velocities or sizes, the base distance
measurement unit is the side length of a single square in the terrain
grid. This is consistent with SC2, and all scenarios available in both
SMAC and SMAClite use a map size of 32 by 32 units.

To further improve environment performance, the units use K-
D trees as available in the Scikit-learn library [21] to find their
neighbours (e.g. finding units within sight range when generating
observation vectors), as opposed to iterating over the entire unit

2We also make available videos showing SMAClite in action:
https://drive.google.com/drive/folders/1-2YJicUqRzovTa7lRgJilwtecxCPrtVb

list. Since K-D trees only support querying in a circular area and
obstacles are always rectangles, when looking for obstacle neigh-
bours, the units query an R-tree from the Python package rtree
[11].

4.2 Base framework
SMAClite, much like SMAC, is defined mostly by the various com-
bat scenarios available, as well as the units participating in those
scenarios. As part of the SMAClite environment, we contribute
a framework capable of reading both custom scenarios and units
from JSON files – this means expertise in the Starcraft II map editor
is no longer required to create new or modified challenges using
the environment. This also means that with SMAClite it is easy
to tell the difference between two different unit types – to com-
pare "zergling" and "marine", all one needs to do is look at their
respective JSON definitions, and see what the differences are.

All of the standard scenarios and units shipped with the envi-
ronment are written using this framework. We give detailed speci-
fication of both the scenario and unit definition formats, as well as
full examples of JSON files compatible with the framework, in the
appendix to this paper.

4.3 Unit command types
At any given point in time, each unit in the environment is executing
one of several types of commands. SMAClite supports five different
command types, with the first four being exactly equivalent to the
four action types available to the agents, as described in Section 3.2.

We introduce one more command type that is unavailable to
agents but is key to theAI opponent’s behaviour, called attack_move
– this command orders the units to march toward a specified loca-
tion, attacking any units encountered along the way, and then guard
the location once it is reached. We based our implementation of
attack-moving on the "Automatic targeting" article on the Starcraft
II Liquipedia [16], but made a few judgement calls based on what
yielded the most desirable behaviour, wherever their information
was unclear or unavailable.

4.4 Environment loop
Each environment step starts with the agents’ units being assigned
commands corresponding to the actions chosen by the agents. Once
that happens, we simulate eight game steps, and the reward re-
turned from the environment step is the sum of the rewards earned
within these game steps. Each game step is considered to last 1

16 th
of a second for the purpose of calculating velocity, cooldowns, etc.
– that does not mean this is its actual duration, as in fact, our en-
vironment can run much faster than real-time (see Section 5.4 for
details).

Briefly, each game step consists of each unit following the logic
associated with its command, e.g. moving, attacking, or waiting.
We give a detailed description of each game step in the appendix.

4.5 Custom ORCA implementation
To facilitate installation simplicity, we rewrote the RVO2 library –
the official implementation of ORCA in the C++ programming lan-
guage from Berg et al. [6] – into NumPy, and we ship this module
together with SMAClite. Because Starcraft II uses compiled (and,

https://drive.google.com/drive/folders/1-2YJicUqRzovTa7lRgJilwtecxCPrtVb

Figure 2: Visualizations of the SMAClite environment. (left) The corridor scenario. (right) The MMM2 scenario.

we assume, highly optimized) C/C++ code, and Python code can
be quite slow compared to it, we ran into performance issues early
in the development of SMAClite. To address this issue, we also
make available an addon for SMAClite3, which uses the original
C++ RVO2 library verbatim, using Python bindings written in the
Cython [4] extension. The Python bindings were originally made
available by Stüvel [26], though we implemented several modifica-
tions to suit our use-case – these modifications are also present in
the Numpy version of RVO2.

The original RVO2 library has no way to remove units one by
one or remove all units at once. These are key features for SMAClite,
as we need to adjust the collision avoidance unit list whenever a
unit dies or whenever we restart the environment. We added both
of these features into RVO2 – we assume dead units disappear from
the battlefield as soon as they are eliminated, so we do not want
other units avoiding collisions with them.

The second set of adjustments considers static units – the original
ORCA algorithm assumes fully cooperative units that will go out of
their way to make the passage easier for other units. Our version,
on the other hand, assumes that if a unit 𝐴 is static (i.e. | |v𝐴 | | = 0),
it will never adjust its velocity. This makes it possible to surround
other units and/or block their path, which is a valid strategy in
Starcraft II. In the original implementation of ORCA, the blocking
units would simply be "pushed" away. Note that to make up for
this, any moving units will adjust their velocity by u instead of 1

2u
(see Section 3.3 for the definition of u), when avoiding static units –
this ensures moving units will not walk into static units.

Because the addon requires building and installing C++ files via
CMake, which could potentially be problematic on some systems, we
chose to make this RVO2 fork available as an optional dependency,
for users who are willing to go through a more difficult installa-
tion process in order to boost environment performance. We call
this version SMAClite_plus. Note that, because of differences in
finding neighbours, unit behaviours will not be exactly the same
between the two versions, but should remain functionally indistin-
guishable. If this addon is in use, custom K-D trees implemented in
C++ for RVO2 are used for finding unit and obstacle neighbours
for collision avoidance purposes, instead of Scikit-learn K-D trees
or rtree R-trees. After it is installed, the addon can be enabled by
setting the parameter use_cpp_rvo2 to True when initialising the

3https://github.com/uoe-agents/SMAClite-Python-RVO2

environment. Any attempt to set this argument to True without
the addon installed will result in an error.

4.6 Opponent AI behaviour
The authors of SMAC [24] claim the opponent team is controlled
by Starcraft II’s built-in AI on the very difficult level. Because the
enemy units’ behaviours seemed very simple, we had our doubts
about their strategic ability whenwatching combat inside the SMAC
environment. For this reason, we performed the following test on
the MMM2, 2c_vs_64zg, and corridor SMAC scenarios.

First, we toggled the AI level inside SMAC across the various
difficulty levels available, while keeping the random number gen-
erator seed constant. We then put the opponent AI against agents
who pick randomly from the available actions. The opponent units’
behaviour was always exactly the same, and we saw no difference at
all in the rewards obtained by the random agents between difficulty
levels – they were exactly equal to at least the tenth decimal place.
Then, going one step further, we removed the AI opponent from
the game, making the enemy units not controlled by any player.
This did not change the units’ behaviour or the resulting
rewards either.

Based on these results, we are reasonably certain Starcraft’s built-
in AI never issues any orders to the enemy units in SMAC. The only
order given to the units is hand-placed inside a script in each SMAC
map file – it tells them to attack-move towards a specific point,
usually where allied units initially appear. Following these results,
we did not implement any custom opponent AI. All we do is, upon
map initialization, set the enemy units’ command to attack_move
towards the attack_point specified in the map scenario file. The
enemy units’ command never changes throughout the encounter.

5 EXPERIMENTS
In this section, we describe the results of various experiments we
performed in our environment. In all of the experiments, we use
all of the scenarios used by Papoudakis et al. [20], with the ad-
dition of bane_vs_bane, which we included to feature a wider
selection of unit types. Specifically, we used the 2sc_vs_1sc (2
stalkers vs 1 spine crawler), 3s5z (symmetric map with 3 stalkers
and 5 zealots on each side), MMM2 (a map with a medivac and some
marines andmarauders on both sides), corridor (6 zealots vs 24 zer-
glings in a narrow passageway), 3s_vs_5z (3 stalkers vs 5 zealots),

https://github.com/uoe-agents/SMAClite-Python-RVO2

and bane_vs_bane (a map with zeglings and banelings on both
sides) scenarios. As optional material helpful to understand each
scenario, we attach Table 3 in the appendix with natural-language
descriptions of each scenario.

Through these experiments, we wish to show that our envi-
ronment does indeed accomplish the goals we set for ourselves.
First and foremost, we want to show that SMAClite poses a chal-
lenge equivalent to SMAC. We want to show that various MARL
algorithms perform in it similarly well as in SMAC, and explain
any discrepancies. We also want to prove that SMAClite is strictly
cheaper to run than SMAC – the main metrics we are interested
in are the time required to run it, and the RAM it takes up on the
machine.

5.1 Agent learning curves
We trained several MARL algorithms on the selected scenarios.
Each training was run for 4 million timesteps, and each training
was repeated using 5 different random number generator seeds.
All of the training were performed on the SMAClite_plus version
of the environment and were performed solely using CPUs, each
training using a single CPU core. The training were run on various
nodes on a cloud cluster, most of them using Intel(R) Xeon(R) Gold
6138 CPUs @ 2.00GHz, and all others used CPUs of comparable
computational capacity. Due to technical constraints, all training
was under a strict 48-hour time limit. For all of the algorithms,
we used hyperparameters listed as the best in SMAC as listed in
the benchmark paper [20]. For the episodic algorithms, we used a
buffer size of 5000, and for the parallel algorithms, we used a buffer
size of 10. We used the EPyMARL framework [20] to run all of the
training.

Some caveats need to be mentioned with regard to the training
procedure. Firstly, the bane_vs_bane scenario is by far the slow-
est (as evidenced by Section 5.4), so we reduced the number of
timesteps to 1 million for this scenario only. In addition, we found
the MADDPG algorithm extremely slow during training, and so it
never reached the required timesteps in two scenarios (MMM2 and
bane_vs_bane) under the time limit, so we omit those two curves
in our figure.

The resulting graphs of episodic return over training time can be
found in Figure 3. In the remainder of this subsection, we compare
the learning curves to those reported for SMAC in the benchmark
paper.

First of all, many algorithms easily solve the 2s_vs_1sc scenario
in SMAC, quickly reaching the maximum reward of 20, while in
SMAClite the best performer (QMIX) only reaches an average return
of about 15. We theorize that this is due to the fact that SMAClite
does not simulate attack animations, and originally in Starcraft II
the spine crawler has a very long attack animation (0.238 seconds
versus 0.1193 seconds for the stalkers), so in SC2 it is much easier
to dodge the spine crawler’s attack in the last possible moment.
Though the difference is less noticeable there, a similar situation
occurs in 3s_vs_5z, and we believe it is for the same reason. Put
simply, we believe kiting – alternating between running away and
attacking without getting hit – is much more difficult in SMAClite
than in SC2 because of the instant attacks.

Another major difference between the SMAC and SMAClite
learning curves is in the MMM2 environment – in the case of SMAClite,
three algorithms (MAPPO, VDN and QMIX) seem to have mastered
the environment, with maximal rewards almost reaching 25 (for
details about how the algorithms achieve this, see the next subsec-
tion), while in SMAC the best-performing algorithms barely reach
a reward of 17.5 (but note that they are the same three algorithms,
which shows the scenarios are still somewhat equivalent). Our hy-
pothesis is that this is due to potentially unintended behaviour in
the SMAC environment code. When calculating rewards, SMAC
simply subtracts enemy units’ new health values from their old
health values, so any healing done by the enemies results in a neg-
ative reward being incurred by the agents, even though they never
did anything wrong. We believe that this, combined with the fact
that rewards should be gained for dealing damage, could confuse
the agents during training. Judging by the wording in section 4 of
the SMAC paper [24] we do not believe this is intentional, so the
same behaviour is not present in SMAClite, where we explicitly de-
fine the reward as the sum of health points lost by the enemies due
to attacks, and we do not penalize the agents for enemies healing.

Despite these few issues, we do observe that the overall shape
of the training curves is comparable to those from SMAC in the
benchmark paper [20] in all scenarios – some of them differ only in
maximum return reached. The ranking of algorithms at the end of
training time is also largely the same between SMAC and SMAClite.
We believe that this is promising evidence pointing towards the
environments being equivalent as far as learning is considered.

5.2 Evaluation of learned behaviours
In this section, we select one model for each scenario, and we
describe the strategies employed by the agents to achieve high
reward values, in order to demonstrate the complexity of strategies
required in SMAClite. Note that the below descriptions are simply
our interpretations of the behaviours demonstrated by the agents
in the environment, informed by our knowledge of the game gained
both by playing Starcraft II and working on SMAClite.

When making our selection, we wanted to showcase each of
the algorithms, and each of them in a scenario where it did well –
note that this means we might not use the best performer in all of
the scenarios, but all of them are at least above average. However,
because there are 9 algorithms and only 6 scenarios and because
not all algorithms performed well, we decided to omit COMA,
MADDPG, and IPPO, which were the overall weakest performers.
In each case, we used the latest available (i.e. highest amount of
training timesteps) checkpoint of agent parameters.
2s_vs_1sc –QMIX –Mean test return: 16.22 – one of the stalkers
is the "baiter" that gets the spine crawler’s attention and they both
attack until the baiter’s health drops down to a very low value, at
which point it backs out and lets the spine crawler target the other
stalker. They then both hit the spine crawler until they die, which
sometimes results in a victory and sometimes in defeat depending
on the random attack order.
3s5z – VDN –Mean test return: 20 – the stalkers and the zealots
both focus on the enemy stalkers first, which deal more damage
per second than the enemy zealots. The allied zealots move slightly
north and the allied stalkers move slightly south, both to direct the

0 1 2 3 4
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

2s_vs_1sc

0 1 2 3 4
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

3s5z

0 1 2 3 4
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

MMM2

0 1 2 3 4
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

corridor

0 1 2 3 4
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

3s_vs_5z

0.00 0.25 0.50 0.75 1.00
Environment timesteps 1e6

0

5

10

15

20

25

Ep
iso

di
c

re
tu

rn

bane_vs_bane

IQL
IA2C

IPPO
MADDPG

COMA
MAA2C

MAPPO
VDN

QMIX
Optimal return

Figure 3: Test-time returns achieved by agents trained using the different algorithms over time during training. The graphs
show the mean value, as well as the 95% confidence interval, from 5 trainings differing by random number generator seed.

attention of enemy stalkers (whose initial position is on the north
side of the enemy army) to the allied zealots, who can takemore hits,
and also to allow allied stalkers plenty of room to maneuver while
attacking. Also worth noting is the fact that the allied units are quite
good at moving away right as their health drops to a dangerously
low level, letting other nearby allies take the aggression.
MMM2 – MAPPO – Mean test return: 24.63 – all allied damage-
dealers focus on the enemy marauders first, because they are the
heavier hitters, while the ally medivac hides behind others as soon
as it gets low since it is a priority target and would quickly be
gunned down. What is interesting here is that the allied units leave
the enemy medivac alive and kill it last, abusing the fact that enemy
units getting healed results in a higher return due to the total
damage dealt is higher – this is how the agents surpass the optimal
return of 20 and reach values close to 25. They even stop hitting
enemy damage-dealers and let them get healed, since the medivac
cannot heal itself.
corridor – MAA2C –Mean test return: 20.25 – the zealots fan
out and form a horizontal line against the zerglings, blocking them
making it harder for the zerglings to surround them. This causes
the zerglings to crowd around the front of the zealot line, reducing
the total amount of damage the zealots take over time.
3s_vs_5z – IQL –Mean test return: 18.1 – the stalkers use the
intended optimal strategy of kiting the zealots around the map. The
lowest-health stalker always makes sure to stand behind the other
two when attacking, in order to avoid dying. The stalkers do seem
to get "lazy" with their kiting when the number of remaining zealots
becomes low, probably because there is no penalty for dying, and
it is easier to just stand and attack when the risk of death is low.
bane_vs_bane – IA2C – Mean test return: 19.14 – the zerglings
run away to the west to avoid the enemy banelings’ explosions,
while the ally banelings charge forward and explode when they
become surrounded by enemy units. The enemy zerglings and
banelings quickly die to multiple explosions. If any enemies remain
after the allied banelings’ explosions, the allied zerglings come out
of hiding and attack.

5.3 Cross-environment zero-shot performance
In order to verify whether our environment does in fact require
the same strategic reasoning as SMAC, we performed zero-shot
transfer learning experiments on each scenario What we mean by
this is, we trained the agents on SMAClite, and then without any
retraining put them inside SMAC in the same scenario. We used

the same models as in the previous experiment – to be specific,
we first used their parameters from the first time the model was
saved (at the very beginning of the training process), and then their
parameters from the last time the model was saved (at the very
end of the training process), and then compared the mean test-time
returns. We present the results in Table 1.

We note that the mean return obtained has increased in all of
the scenarios, with some exhibiting significant improvements such
as doubling or tripling of the mean return. A noteworthy example
is the bane_vs_bane scenario, where even the early version of the
agents got close to the optimal return of 20, but was still improved
upon by the later version. Because all of the scenarios exhibited
improved returns upon training in SMAClite, we believe there is
evidence to support the two environments requiring similar sets of
skills, and that transfer learning from one to the other is a viable
training strategy.

5.4 Environment Performance Benchmark
In this section, we consider the performance of the environments
themselves, to confirm that SMAClite is indeed cheaper to run than
SMAC. To obtain the data in this benchmark, we ran each scenario
20 times with agents picking randomly among the available actions.
All of the below experiments were run on a computer with an AMD
Ryzen 3700X CPU.

In Table 2 one can find the time each environment took per
timestep (excluding logic not belonging to the environment, like
action selection). We notice that the pure Python code is indeed
slower than the original SMAC environment, but the environment
becomes much faster when using the C++ RVO2 addon.

Note that these timings correspond to running a single environ-
ment step, which consists of 8 game steps in sequence, together
with any environment-only logic (e.g. calculating rewards and de-
termining observations). If we ever were to run experiments against
human players (assuming SMAClite got some human control ex-
tension), we would want the environment to be capable of running
in real-time. Both in SC2 and SMAClite, each game step, of which
there are 8 in an environment step, is considered to last 1

16 sec-
onds, and most human players play SC2 at the "faster" in-game
speed, which corresponds to a 40% speed-up [16]. Therefore, in
order for the environments to run in real-time, they can afford to
use 8

16∗1.4 ≃ 0.357 seconds per environment step. Thus, all versions
of the environment are more than capable of running all tested

Table 1: Mean test returns achieved by agents trained on SMAClite when put inside the original SMAC environment, achieved
using the parameters from the first time they were saved during training, and from the last time they were saved during
training. Late return on SMAClite is also included for reference.

Scenario algorithm early return late return late return on SMAClite
2s_vs_1sc QMIX 0 11.4 16.22

3s5z VDN 3.09 8.96 20
MMM2 MAPPO 1.87 6.70 24.63

corridor MAA2C 3.35 4.48 20.25
3s_vs_5z IQL 3.13 9.33 18.1

bane_vs_bane IA2C 18.97 19.84 19.14

Table 2: Average seconds per timestep on the SMAC scenarios we used for training. Data was obtained by running the scenario
20 times against random agents.

Scenario SMAC SMAClite Change SMAClite_plus Change
2s_vs_1sc 0.004 0.007 +75% 0.003 -25%

3s5z 0.013 0.018 +38% 0.007 -46%
MMM2 0.017 0.028 +64% 0.010 -41%

corridor 0.014 0.092 +557% 0.010 -28%
3s_vs_5z 0.006 0.013 +116% 0.005 -17%

bane_vs_bane 0.049 0.086 +76% 0.024 -51%

scenarios in real-time – the advantage of SMAClite_plus becomes
the most obvious when running lengthy training which requires
many executions of the environment.

While running the experiments described above, we also mea-
sured the amount of RAM used by each environment. This did not
vary a lot by scenario and oscillated around 600 MB for the SMAC en-
vironment, and around 100MB for the SMAClite and SMAClite_plus
environments. Therefore, our lightweight version of the environ-
ment requires six times less memory than the original SMAC envi-
ronment to run.

6 FUTUREWORK AND CONCLUSION
We presented SMAClite – a lightweight environment for MARL,
consisting of a game engine emulating the Starcraft II minigame of
SMAC, as well as a framework for easily creating new scenarios and
units for this engine, using a familiar JSON format. We conducted
experiments to show that SMAClite presents a challenge equivalent
to SMAC, both by comparing learning curves and MARL algorithm
rankings, as well as through a zero-shot learning experiment where
training on SMAClite improved the agents’ SMAC performance.
We also showed that this challenge comes at a much-reduced cost,
both in terms of required time and memory.

The SMAClite engine and framework are both very much open
to extensions. Thanks to the fact that the environment is no longer
bound by the Starcraft II dependency, developers could introduce
game mechanics unrelated to Starcraft II, and could also go beyond
the game’s technical limitations. One could implement new unit
types unseen in SC2 with new attack types or abilities, or easily
create countless intricate puzzles for the agents to solve using the
scenario framework.

It is also possible to treat SMAClite strictly as an extension of
SMAC and work towards making it as close to SMAC as possible

while maintaining the performance improvements it brings. This
would likely mean focusing on transfer learning experiments such
as the one in Section 5.3, and eliminating various differences present
currently between the environments. One example might be a pro-
jectile/animation simulation, which is one of the major differences
between the SMAC and SMAClite, and caused discrepancies in
2s_vs_1sc, as well as in 3s_vs_5z, during our experiments.

One noteworthy contribution to the SMAC ecosystem is SMAC
v2 [9], which introduces procedurally generated scenarios that
change episode-to-episode, and show that this stochasticity makes
for more challenging scenarios and forces the agents’ strategy to
be more adaptable. This is certainly in interesting direction, and
we will look into implementing similar improvements to SMAClite
in the nearest future.

One could also work on improving the modified ORCA algo-
rithm’s combat capabilities – as evidenced by the corridor sce-
nario, the SC2 zerglings were much better at surrounding the zealot
wall as performed by our MAA2C agents than the SMAClite zer-
glings. This probably stems from the fact that RVO2 is mostly a
general-purpose collision avoidance algorithm, while SC2’s algo-
rithm was handwritten for the best combat performance possible.
Another feature idea we could use from SC2 is a pathfinding algo-
rithm, since running in a straight line becomes a problem very soon
when the terrain becomes any more complicated than the terrain
in our experimental scenarios.

REFERENCES
[1] [n.d.]. Pygame. https://github.com/pygame/pygame
[2] Stefano V. Albrecht, Cillian Brewitt, John Wilhelm, Balint Gyevnar, Francisco

Eiras, Mihai Dobre, and Subramanian Ramamoorthy. 2021. Interpretable Goal-
based Prediction and Planning for Autonomous Driving. In IEEE International
Conference on Robotics and Automation, ICRA 2021, Xi’an, China, May 30 - June 5,
2021. IEEE, 1043–1049. https://doi.org/10.1109/ICRA48506.2021.9560849

[3] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot,
H. Francis Song, Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward
Hughes, Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and
Michael Bowling. 2020. The Hanabi challenge: A new frontier for AI research.
Artif. Intell. 280 (2020), 103216. https://doi.org/10.1016/j.artint.2019.103216

[4] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Sel-
jebotn, and Kurt Smith. 2011. Cython: The best of both worlds. Computing in
Science & Engineering 13, 2 (2011), 31–39. Publisher: IEEE.

[5] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The
Arcade Learning Environment: An Evaluation Platform for General Agents. J.
Artif. Intell. Res. 47 (2013), 253–279. https://doi.org/10.1613/jair.3912

[6] Jur van den Berg, Stephen J. Guy, Ming C. Lin, and Dinesh Manocha. 2009.
Reciprocal \emphn-Body Collision Avoidance. In Robotics Research - The 14th
International Symposium, ISRR 2009, August 31 - September 3, 2009, Lucerne,
Switzerland (Springer Tracts in Advanced Robotics, Vol. 70), Cédric Pradalier,
Roland Siegwart, and Gerhard Hirzinger (Eds.). Springer, 3–19. https://doi.org/
10.1007/978-3-642-19457-3_1

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw
Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christo-
pher Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki,
Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Sali-
mans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski, and Susan Zhang. 2019. Dota 2 with Large Scale Deep Reinforce-
ment Learning. CoRR abs/1912.06680 (2019). http://arxiv.org/abs/1912.06680
arXiv: 1912.06680.

[8] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[9] Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Maha-
jan, Jakob Nicolaus Foerster, and Shimon Whiteson. 2022. SMACv2: A New
Benchmark for Cooperative Multi-Agent Reinforcement Learning. (June 2022).
https://openreview.net/forum?id=pcBnes02t3u

[10] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. 2018. Counterfactual Multi-Agent Policy Gradients. In
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the
8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18),
New Orleans, Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q.
Weinberger (Eds.). AAAI Press, 2974–2982. https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/17193

[11] Gillies, Sean, Butler, Howard, Pedersen, Brent, Matthias, and Adam Stewart.
[n.d.]. Rtree: Spatial indexing for Python. https://github.com/Toblerity/rtree

[12] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[13] Peter Hart, Nils Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics 4, 2 (1968), 100–107. https://doi.org/10.1109/tssc.1968.
300136 Publisher: Institute of Electrical and Electronics Engineers (IEEE).

[14] Mingyu Kim, Jihwan Oh, Yongsik Lee, Joonkee Kim, Seonghwan Kim, Song
Chong, and Se-Young Yun. 2022. The StarCraft Multi-Agent Challenges+ : Learn-
ing of Multi-Stage Tasks and Environmental Factors without Precise Reward
Functions. CoRR abs/2207.02007 (2022). https://doi.org/10.48550/arXiv.2207.
02007 arXiv: 2207.02007.

[15] Aleksandar Krnjaic, Jonathan D. Thomas, Georgios Papoudakis, Lukas Schäfer,
Peter Börsting, and Stefano V. Albrecht. 2022. Scalable Multi-Agent Reinforce-
ment Learning for Warehouse Logistics with Robotic and Human Co-Workers.
_eprint: 2212.11498.

[16] Liquipedia. [n.d.]. Starcraft II Liquipedia. https://liquipedia.net/starcraft2/Main_
Page

[17] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mor-
datch. 2017. Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy

Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 6379–6390. https://proceedings.neurips.cc/paper/2017/hash/
68a9750337a418a86fe06c1991a1d64c-Abstract.html

[18] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. In Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016 (JMLR Workshop and Conference Proceedings, Vol. 48),
Maria-Florina Balcan and Kilian Q. Weinberger (Eds.). JMLR.org, 1928–1937.
http://proceedings.mlr.press/v48/mniha16.html

[19] Igor Mordatch and Pieter Abbeel. 2018. Emergence of Grounded Compositional
Language in Multi-Agent Populations. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger (Eds.). AAAI Press, 1495–
1502. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007

[20] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Al-
brecht. 2021. Benchmarking Multi-Agent Deep Reinforcement Learning Al-
gorithms in Cooperative Tasks. In Proceedings of the Neural Information Pro-
cessing Systems Track on Datasets and Benchmarks 1, NeurIPS Datasets and
Benchmarks 2021, December 2021, virtual, Joaquin Vanschoren and Sai-Kit Yeung
(Eds.). https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/
a8baa56554f96369ab93e4f3bb068c22-Abstract-round1.html

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[22] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker,
Glenn Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder,
Vikash Kumar, and Wojciech Zaremba. 2018. Multi-Goal Reinforcement Learn-
ing: Challenging Robotics Environments and Request for Research. CoRR
abs/1802.09464 (2018). http://arxiv.org/abs/1802.09464 arXiv: 1802.09464.

[23] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 4295–4304.

[24] Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr,
Jakob N. Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Chal-
lenge. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019,
Edith Elkind, Manuela Veloso, Noa Agmon, andMatthew E. Taylor (Eds.). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2186–2188.
http://dl.acm.org/citation.cfm?id=3332052

[25] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
http://arxiv.org/abs/1707.06347 arXiv: 1707.06347.

[26] Sybren A. Stüvel. [n.d.]. Python bindings for Optimal Reciprocal Collision
Avoidance. https://github.com/sybrenstuvel/Python-RVO2

[27] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-
cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z.
Leibo, Karl Tuyls, and Thore Graepel. 2018. Value-Decomposition Networks For
Cooperative Multi-Agent Learning Based On Team Reward. In Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, Elisabeth André, Sven Koenig,
Mehdi Dastani, and Gita Sukthankar (Eds.). International Foundation for Au-
tonomous Agents and Multiagent Systems Richland, SC, USA / ACM, 2085–2087.
http://dl.acm.org/citation.cfm?id=3238080

[28] Ming Tan. 1993. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learning.
330–337.

[29] Guido Van Rossum and Fred L Drake Jr. 1995. Python reference manual. Centrum
voor Wiskunde en Informatica Amsterdam.

[30] Florian Vaussard, Julia Fink, Valerie Bauwens, Philippe Rétornaz, David Hamel,
Pierre Dillenbourg, and Francesco Mondada. 2014. Lessons learned from robotic
vacuum cleaners entering the home ecosystem. Robotics Auton. Syst. 62, 3 (2014),
376–391. https://doi.org/10.1016/j.robot.2013.09.014

[31] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja
Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander S.
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias
Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKin-
ney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft

https://github.com/pygame/pygame
https://doi.org/10.1109/ICRA48506.2021.9560849
https://doi.org/10.1016/j.artint.2019.103216
https://doi.org/10.1613/jair.3912
https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1007/978-3-642-19457-3_1
http://arxiv.org/abs/1912.06680
https://openreview.net/forum?id=pcBnes02t3u
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17193
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17193
https://github.com/Toblerity/rtree
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.48550/arXiv.2207.02007
https://doi.org/10.48550/arXiv.2207.02007
https://liquipedia.net/starcraft2/Main_Page
https://liquipedia.net/starcraft2/Main_Page
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html
http://proceedings.mlr.press/v48/mniha16.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17007
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a8baa56554f96369ab93e4f3bb068c22-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/a8baa56554f96369ab93e4f3bb068c22-Abstract-round1.html
http://arxiv.org/abs/1802.09464
http://dl.acm.org/citation.cfm?id=3332052
http://arxiv.org/abs/1707.06347
https://github.com/sybrenstuvel/Python-RVO2
http://dl.acm.org/citation.cfm?id=3238080
https://doi.org/10.1016/j.robot.2013.09.014

II using multi-agent reinforcement learning. Nature 575, 7782 (Nov. 2019), 350–
354. https://doi.org/10.1038/s41586-019-1724-z Number: 7782 Publisher: Nature
Publishing Group.

[32] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha
Vezhnevets, Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John P. Aga-
piou, Julian Schrittwieser, John Quan, Stephen Gaffney, Stig Petersen, Karen
Simonyan, Tom Schaul, Hado van Hasselt, David Silver, Timothy P. Lillicrap,
Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence, Anders Ekermo,
Jacob Repp, and Rodney Tsing. 2017. StarCraft II: A New Challenge for Reinforce-
ment Learning. CoRR abs/1708.04782 (2017). http://arxiv.org/abs/1708.04782
arXiv: 1708.04782.

[33] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu.
2021. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
arXiv preprint arXiv:2103.01955 (2021).

https://doi.org/10.1038/s41586-019-1724-z
http://arxiv.org/abs/1708.04782

Appendix A SMACLITE FRAMEWORK
DETAILS

A.1 Scenario definition
Our framework accepts scenario JSON files containing a single
JSON object. Each scenario should have a name to identify it, and
should specify the numbers of allied and enemy units with the
num_allied_units and num_enemy_units parameters. The units
in the scenario should be listed with the groups parameter, each
group being a JSON object with x and y parameters specifying the
group’s center, a faction parameter (ALLY or ENEMY) to specify
which team the units are on, and a units parameter with an object
of unit types together with their counts. Each group will initially
be laid out in the shape of a square around their specified location.
Note that these groups have no impact beyond unit positioning –
once initial unit placement is complete, neither the agents nor the
units have any information about what group they came from.

The framework supports two ways of specifying unit types. In
order to use a standard unit type, its uppcercase name should be
used (e.g. ZERGLING). The other way to specify a unit type is to
provide a path to a JSON file with its specification. The framework
also supports an optional custom_unit_path parameter – if speci-
fied, this path will be prepended to all unit types specified as a path.
Note that if the .json extension is missing the framework reat-
taches it automatically, so if the custom unit path is path/to and
the unit type specification is type, the framework will look for the
file custom/unit/type.json file. The framework also requires an
attack_point, which is typically near to the initial positions of the
allied units – this point is where the enemy units will be marching
towards throughout the scenario (see Section 4.6 for details).

The framework also supports two ways of defining terrain –
one way is to pick a standard terrain present by supplying the
terrain_preset parameterwith its uppercase name (e.g. CORRIDOR).
Terrain can also be provided in the scenario definition file itself us-
ing the terrain argument, which should consist of a list of strings
forming a rectangular 2D array. The framework supports two types
of terrain: _ for walkable, and X for non-walkable. The framework
also always requires a width and height to be specified for the
scenario, which should match the terrain dimensions – note that
all scenarios adapted from SMAC have the dimensions of 32 by 32.

Finally, the framework requires some general details about units
participating in the scenario. The parameters ally_has_shields
and enemy_has_shields specify which teams, if any, should have
shields active on them, and the parameters num_unit_types and
unit_type_ids specify what IDs the agents will receive in obser-
vations for the various unit types. The former should be a number
(note that scenarios adapted from SMAC use 0 for all scenarios
where both teams are homogenous, i.e. only have one unit type
each), and the latter should be a map from unit type specifications
(same as above) to numbers from 0 to num_unit_types minus one.
The length of the map must be equal to num_unit_types.

We ship several standard scenarios with this environment as
separate OpenAI Gym environments (e.g. smaclite/2s3z-v0). To
use a custom scenario file, one should use the smaclite/custom-v0
Gym environment, and provide a path to the scenario file via the
map_file parameter.

A.2 Unit definition
Each unit is assigned a specific type, with a set of different attributes
impacting the environment mechanics. Our framework supports
several attributes in the JSON files defining the various unit types,
in order to allow for their easy customization.

Firstly, the framework supports several attributes defining the
units’ resources, including their maximum health and health re-
generation via the hp and hp_regen attributes, respectively. Their
shields, if any, via the shield attribute, and their maximum and
initial energy via the energy and initial_energy attributes. The
units’ size can be specified by providing their diameter in the size
attribute, and their speed (in distance per second) via the speed
parameter.

Then, the framework supports several attributes defining the
units’ combat abilities. Their combat_type (always one of DAMAGE
or HEALING) defines their main role on the battlefield, and their
damage defines how strong of a hitter they are, while their armor
defines their defensive capabilities. Each unit has an attack_range,
which defines how close (measured boundary to boundary) the
unit has to get to a target in order to attack or heal it4. Note that
while a numeric value is usually expected for this attribute, the
special value of MELEE is also accepted to signify that the unit
should have the standard melee range, i.e. only attack from up close.
Some units can deal damage multiple times per attack – this can
be achieved using the attacks attribute (e.g. 2 for attacking twice
at once), and after attacking, each unit has to wait their specific
cooldown before attacking again. Each unit type should also define
a minimum_scan_range, which will govern how far the units will
look when searching for targets.

In SMAClite, each unit resides in a specific plane, with three
currently supported: GROUND, AIR, and COLOSSUS. When moving,
the units only avoid collisions with units in the same plane as them,
and only ground units are affected by static obstacles. All of the
units in SMAClite can only target units which reside in the planes
listed in their valid_targets – for example, if AIR is not in this
list for some unit, then it can never attack airborne units. But note
that, regardless of their valid_targets, all units can target units
int he COLOSSUS plane.

In order to support making certain unit types stronger against
specific other types, the framework also supports a system of unit
attributes (e.g. BIOLOGICAL) and attribute-relative bonuses, de-
fined as a map from attribute to bonus value. For example, if a unit
type has a bonus of 20 against ARMORED units, it will deal 20 bonus
damage with each attack against units with that attribute.

Finally, the framework supports several different attack types for
units, defined by the targeter and targeter_kwargs attributes.
The most common attack type is STANDARD, which simply has the
unit attacking one target at a time. The other attack types are only
used by one standard unit each, but can easily be reused for custom
unit types. The KAMIKAZE attack type has the unit explode when
attacking, dealing damage in a circle with a specified radius around
itself and dying the process. The LASER_BEAM type fires a laser in a
line perpendicular to the line between the attacker and their target –

4Note that this is different from the agent targeting range mentioned in Section 3.2 –
that range only affects the agents’ observations, while this one actually governs when
an attack can happen.

Table 3: Combat scenarios used in our experiments.

Name Allied Units Enemy Units Description
2s_vs_1sc 2 1 Two stalkers – powerful but fragile ranged units – face off against one spine crawler –

very strong unit with no movement capabilities. The stalkers need to abuse the spine
crawler’s immobility to bring its health down.

3s5z 8 8 A symmetrical map with each team having three stalkers and five zealots – melee units
that deal less damage but can take a lot of hits before dying.

MMM2 10 12 Each team has some marines – fragile ranged units that attack quickly, some marauders –
more durable units that have stronger attacks, but can’t hit flying units, and one medivac
– a flying healer unit.

corridor 6 24 The allied team only has 6 zealots to hold off 24 zeglings – extremely fragile but very
quick units with potential to overwhelm unprepared enemies with numbers and surround
them.

3s_vs_5z 3 5 Three stalkers need to keep the quick zealots at bay while outnumbered, using their
range to their advantage.

bane_vs_bane 24 24 Each team has some zerglings and some explosive kamikaze banelings, each of which
can easily take out several zegrlings with one explosion.

more specifically, the laser line is a rectangle with a specified width
and height. Lastly, the HEAL attack type is used by healer units.

Appendix B SMACLITE FRAMEWORK
EXAMPLES

B.1 Example of a valid scenario file
The following is an example custom scenario similar to the built-in
scenario 10m_vs_11m, but using custom units.

{
"name": "10m_vs_11m",

"custom_unit_path": "smaclite/env/units/smaclite_units",
"num_allied_units": 10,
"num_enemy_units": 11,
"groups": [

{
"x": 9,
"y": 16,
"faction": "ALLY",
"units": {

"example_custom_unit": 10
}

},
{

"x": 23,
"y": 16,
"faction": "ENEMY",
"units": {

"example_custom_unit": 11
}

}
],
"attack_point": [9, 16],
"terrain_preset": "NARROW",
"num_unit_types": 0,

"ally_has_shields": false,
"enemy_has_shields": false

}

B.2 Exmaple of a valid unit file
The following is a custom unit similar to the built-in MARINE unit,
but with a much larger (effectively global) scan range

{
"hp": 45,
"armor": 0,
"damage": 6,
"cooldown": 3,
"speed": 3.15,
"attack_range": 3,
"size": 3,
"attributes": ["LIGHT", "BIOLOGICAL"],
"minimum_scan_range": 100,
"valid_targets": ["GROUND", "AIR"]

}

Appendix C DETAILS ON THE SMACLITE
GAME LOOP

In this section we describe in detail the logic of each game step,
of which there are several within each environment step. Each
game step consists of several phases. These phases were developed
by us and we have no information about whether the game steps
inside Starcraft II follow any sort of similar order – this structure
was simply what yielded the most reasonable game ruleset that is
resembles Starcraft II. Before the next phase can begin, all units
must execute the logic for the previous phase. This is necessary to
ensure the units’ perceptions of other units (note: unrelated to the
agents’ observations) remain consistent throughout the execution
of the game step.

C.1 Target clean-up
First of all, each unit might lose the target it was attacking or healing
in the previous game-step, according to command-specific logic.
It is necessary for all units to execute this logic before proceeding
with declaring their preferred velocity for this game step because
other units might access the target information when computing
their own preferred velocity.

Units with the noop, stop, and move commands immediately
lose any target they had, since these are non-combat commands.
Units with the target command acquire the target dictated by
their command, or retain it they are already targeting it. With the
attack_move command, the units consider several factors. They
always lose a dead target and they never lose a target who attacked
them in the last game step. Otherwise, they lose their target if it is
outside of their attack range.

C.2 Velocity preparation
In this phase all units declare their preferred velocity for this game
step. It is necessary that they all do this before proceeding with
velocity adjustment via the ORCA algorithm, because units can per-
ceive each other’s preferred velocity and make collision avoidance
decisions based on that information.

In the case of noop and stop commands, the preferred velocity
of the units is always 0. In the case of the move command, if the
unit’s maximum velocity is 𝑣𝑚𝑎𝑥 , its current position is x, and the
position where it wants to move is y, where x ≠ y, then the unit
always declares that its preferred velocity is (y−x) 𝑣𝑚𝑎𝑥

| |y−x | | . If x = y,
then the preferred velocity is instead 0. Put simply, the unit always
wishes to move in a straight line towards its destination – this is
different to Starcraft II’s engine which has a built-in pathfinding
algorithm based on the A* algorithm [13] – but we decided to omit
it, since it only matters in one of the many scenarios offered by
SMAC (2c_vs_64zg).

If the unit’s command is target, the unit considers its distance
from the target unit. Let the unit’s attack range be 𝑑𝑚𝑎𝑥 , its radius
𝑟𝐴 , and its target radius 𝑟𝐵 , and let the distance between it and
the target be defined as 𝑑 (𝐴, 𝐵). Then, in the case where 𝑑 (𝐴, 𝐵) >
𝑟𝐴+𝑑𝑚𝑎𝑥+𝑟𝐵 , the unit declares it is moving in a straight line towards
its target, and proceeds as with a move command. Otherwise, it
declares it is attacking or healing, and its preferred velocity is 0.

Finally, if the unit’s command is attack_move, the unit first
finds the valid targets within its scan range. It is important to note
that if the unit is a damage-dealer, it considers any enemy healers
priority targets, and all other enemy units as non-priority targets
– if the unit still has a target after the target clean-up phase, the
only way it will switch targets at this point is if its current target is
not a priority target, and there is a priority target within its scan
range. If it does not have a target, or needs to switch, it picks the
closest target with the highest available priority among the valid
targets. The process is slightly different with healers, who consider
valid targets any non-healer units in their team who are below full
health, or who are attacking another unit. The healer unit picks
as its target the lowest-health unit among its valid targets. After
the target selection process finishes, the unit proceeds as with a
target command if it has a target, and as with a move command
toward its attack-move destination position if it does not. Note that

healers will adjust their maximum velocity for any given game
step to match the slowest allied unit within their scan range – we
implemented this behaviour in order to stop them getting in front
of their army if they are the fastest units.

There are a few intentional changes from SC2 in this phase –
therein, it is not true that healers can target any non-healers, and
can never target other healers or themselves. This is only true with
the limited set of units present in SMAC, and we felt it makes
for a nice simplification of the SC2 ruleset that does not change
anything in SMAC. It is also not true that damage-dealers consider
any healers as priority targets in SC2 – they only do in SMAC due
to the modifications made to the map files by its authors – again,
we felt this is a nice simplification aligned with SMAC, but not with
SC2.

C.3 Velocity adjustment
Each unit 𝐴 uses the ORCA algorithm to determine its actual ve-
locity that avoids collisions, taking into account its own preferred
velocity, as well as its neighbour units and obstacles. For the pur-
pose of collision avoidance, the unit considers its neighbours all
units within the radius of (𝑟𝐴 + 𝑟𝑚𝑎𝑥)𝜏 of itself, where 𝑟𝑚𝑎𝑥 is
the maximum radius of any unit in the scenario and 𝜏 is the time
horizon; and all obstacles within the radius of 𝑟𝐴 +𝜏𝑣𝐴,𝑚𝑎𝑥 of itself.
In SMAClite, we always use 𝜏 = 1, i.e. the units want to guarantee
avoiding collisions for 1 second, or 16 game steps. The ORCA algo-
rithm returns for each unit its actual velocity, given its preferred
velocity. For details on our implementation of the ORCA algorithm,
refer to Section 4.5.

C.4 Game step execution
This is the final phase of the game step, and because order mat-
ters here (a unit might be eliminated before it gets to execute its
command), the units execute their respective logic for this phase
in random order, controlled by the environment randomness seed,
with the order being re-randomized in each game step. Note that
we do not have any data about whether Starcraft II also randomizes
game step execution order, this simply felt like a decent compromise
between fairness and simplicity.

Each unit, regardless of its command type, begins this phase
by performing several standard updates. It updates its position
according to its actual velocity computed in the previous phase
(i.e. x𝑛𝑒𝑤 = x + v𝑎𝑐𝑡𝑢𝑎𝑙

16 , since velocity is always defined in distance
per second), it reduces its cooldown if applicable (i.e. if it is greater
than 0, it gets reduced by 1

16 th of a second), and it regenerates
health, energy, and/or shields, if applicable. It then proceeds with
command-specific logic.

The only case where any command-specific logic is performed
at this point is if the unit’s command is target, or attack_move
with a non-empty target, and the unit declared during the velocity
preparation phase that it is attacking or healing, and its current
cooldown is 0 – in all other cases the unit’s game step logic ends
here. In the single actionable case, it attacks or heals its target.

Damage from attacks is dealt first to the enemy shields, then
to the enemy health, with any damage dealt to the target’s health
being reduced by its armor. If the unit’s attacks attribute is greater
than 1, then it deals damage multiple times in a row during this

step. If the unit did attack, its cooldown is then set to its maximum
value, defined by the unit’s type. Healing units heal their target at
a rate of 9 health per second, spending 1

3 of an energy point per
health healed.

Do note that units might attack or heal units that are technically
outside of their range at this point, because attack/heal declaration
happened during the velocity preparation phase, and the target
might have moved away slightly since then. This is intentional
and is meant to prevent endless chases when the units’ velocities

are similar. Again, we do not have data on whether the Starcraft
II engine features any similar simplifications, but this rule works
well for SMAClite.

In addition, there is an intentional change from SC2 in here
as well, because for simplicity we do not simulate attack anima-
tions or attack projectiles – every attack happens instantly in the
timestep when the unit declares it is attacking. This causes some
small discrepancies from SC2, but we believe the margin of error is
acceptable.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Multi-Agent Reinforcement Learning
	3.2 SMAC
	3.3 Optimal Reciprocal Collision Avoidance

	4 SMAClite
	4.1 Environment implementation
	4.2 Base framework
	4.3 Unit command types
	4.4 Environment loop
	4.5 Custom ORCA implementation
	4.6 Opponent AI behaviour

	5 Experiments
	5.1 Agent learning curves
	5.2 Evaluation of learned behaviours
	5.3 Cross-environment zero-shot performance
	5.4 Environment Performance Benchmark

	6 Future Work And Conclusion
	References
	A SMAClite framework details
	A.1 Scenario definition
	A.2 Unit definition

	B SMAClite framework examples
	B.1 Example of a valid scenario file
	B.2 Exmaple of a valid unit file

	C Details on the SMAClite Game loop
	C.1 Target clean-up
	C.2 Velocity preparation
	C.3 Velocity adjustment
	C.4 Game step execution

