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ABSTRACT
Autonomous agents acting in real-world environments often need
to reason with unknown novelties interfering with their plan exe-
cution. Novelty is an unexpected phenomenon that can alter the
core characteristics, composition, and dynamics of the environ-
ment. Novelty can occur at any time in any sufficiently complex
environment without any prior notice or explanation. Previous
studies show that novelty has catastrophic impact on agent per-
formance. Intelligent agents reason with an internal model of the
world to understand the intricacies of their environment and to suc-
cessfully execute their plans. The introduction of novelty into the
environment usually renders their internal model inaccurate and
the generated plans no longer applicable. Novelty is particularly
prevalent in the real world where domain-specific and even pre-
dicted novelty-specific approaches are used tomitigate the novelty’s
impact. In this work, we demonstrate that a domain-independent AI
agent designed to detect, characterize, and accommodate novelty
in smaller-scope physics-based games such as Angry Birds and
Cartpole can be adapted to successfully perform and reason with
novelty in realistic high-fidelity simulator of the military domain.
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1 INTRODUCTION
Current artificial intelligence (AI) systems excel in narrow-scoped
closed worlds such as board games and image classification. How-
ever, AI systems performance drops when accommodating to con-
stantly changing conditions [7]. On the other hand, automated
Planning has long been utilized for military applications. For ex-
ample, aircrew decision aiding modern military air missions [18],
generating complex battle plans for military tactical forces [15],
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handling crisis and disaster relief [26], and controlling autonomous
unmanned aerial vehicle in beyond-visual-range combat [9]. The
military not only requires a quick and decisive course of action
(COA), but also flexibility to handle unforeseen situations. Good cri-
sis management is characterized by quick response, decisive action,
and flexibility to adapt to changing environments [26].

In another example, unmanned aerial vehicles (UAVs) engaged
in air combat, seen in [9], continuously monitoring the actions
of opponent aircraft and performing behavior recognition to pre-
dict their opponents’ current plans and targets. However, this does
not include enemy behavior or weapons that are far out of scope,
rendering the original domain knowledge no longer feasible. Fur-
thermore, a simple goal change or replanning can no longer resolve
the problem. In order to accommodate meaningful and impact-
ful real-world novelty, we propose integrating novelty reasoning
approaches into conventional state of the art AI systems using a
realistic military simulator. This is a step towards showing how AI
adapts to open-real-world messiness.

In the realistic military simulator we use, there is an existing
baseline AI agent that does not perform well when encountering
novelty during a mission. The non-novelty agent determines its
COAs using a branch-and-bound search algorithm. To improve the
existing AI and be able to handle novelty will include updating the
existing agent to use PDDL+ with model manipulation operators
(MMOs) to monitor and repair in an event of novelty detection
via a model consistency checker. Finally, an execution engine is
required to translate the PDDL+ plan to run in the realistic military
simulator.

In this work, we adapt Hydra [24], an existing single-agent
AI planning-based novelty-aware approach to executing complex
real-world scenarios in a high-fidelity military simulator. Previ-
ously, Hydra has mostly been applied to physics-based single-agent
lower fidelity games such as Angry Birds [11] and OpenAI Gym’s
C+artpole [4]. In a high-level overview, instead of relying solely
on the AI planner integrated in the simulator, we delegate the mid-
and high-level decision making to Hydra while continuing to ex-
ploit the integrated AI for low-level planning and execution. The
resulting composite agent architecture enables reasoning with nov-
elty introduced in the multi-agent high-fidelity simulator which
was previously not possible. The novelty-aware functionality is
of great importance in military applications where environmental
phenomena and enemy behavior must be accurately captured and



reasoned with. We demonstrate improvement over the baseline AI
agent decision making.

2 RELATEDWORK
Novelty [3] [16] [1] [5] that is unknown, unexpected, or out of
distribution is important to consider when moving AI agents from
closed world games and simulations to the open real world. There
exists many domains where research is currently being performed,
including Monopoly [14], Minecraft [20], [19], Angry Birds [11],
Doom [13], Cartpole [3], natural language processing [17], and
computer vision [12]. In general, novelty that does not effect any
outcome of the system is considered nuisance novelty and does not
have to be addressed.

Hypothesis-Guided Model Revision over Multiple Aligned Repre-
sentations (Hydra) [24] is an AI framework that uses a model-based
planning approach to detect, characterize, and accommodate to vari-
ous novelties in multiple domains including Angry Birds, Minecraft,
and Cartpole. Hydra uses PDDL+ [10], a standardized planningmod-
eling language for mixed discrete-continuous systems, to capture
the composition and dynamics of the modeled scenario. PDDL+ is
a highly expressive language which enables accurate capture of
dynamical system characteristics. Currently, Hydra auto-generates
PDDL+ problem instance files from the environment perception
information, which are then combined with a manually written
domain (describing the generic system dynamics) to create a full
planning model (note that the domain only needs to be written once
per environment). Hydra then uses the PDDL+ planning model to
detect novelty via consistency checking. A consistency checker de-
tects divergence between the expected behavior (i.e., the planning
trace) and the observations collected when executing the plan in the
simulation environment. Consistency checkers can be general (i.e.,
taking into account all components of the environment) or focused
(i.e., only focusing on a smaller subset of the environment features
(e.g., unexpected behavior of a particular agent acting within the
environment, or unexpected effect of an executed action). Initially,
the PDDL+ planning model only accounts for non-novel behavior
since novelty existence is not proved and the type of novelty is
not known. Once an impactful novelty is detected via consistency
checking, Hydra engages the repair module to find an explanation
for the divergent behavior. The PDDL+ planning model is modi-
fied until the planning-based predictions are re-aligned with the
observations. Currently, this is performed via a heuristic search
process which adjusts the values of state variables such that the
inconsistency (i.e., the euclidean distance between expected and
observed state trajectories) is minimized.

AFSIM [8] provides a realistic simulation of behavior for the en-
tities including F-35 fighter jets and surface-to-air missiles (SAM).
The environment simulates real world environmental character-
istics, including partial observability, stochasticity, multi-agent,
dynamic, sequential, continuous, and asymmetric battles. An exam-
ple of each characteristic is provided, but not limited to, the below
examples:

• Partially observable: Nothing is observed at the beginning
of a battle, the agent can use sensors to provide observations
from its limited abilities.

• Stochasticity: Missiles fired at a target may not always hit,
radar and sensors may not always function properly. Start-
ing positions of battles will vary (it is worth noting that
stochasticity is different from novelty that we accommodate
in this paper).
• Adversarial: inherently competitive multi-agent environ-
ment.
• Dynamic: the environment is constantly changing in real
time.
• Sequential: agent actions will have a long term effect for the
mission at a later time. Continuous: States, time, actions are
continuous.
• Asymmetric: rewards and objectives are different for the
agents on opposite sides.
• Noisy: Sensor errors can cause confusion to the AI.

3 PROBLEM SETUP
We will simulate the use case from the Hollywood movie Top
Gun:Maverick. Where two aircraft must cooperate and fire sep-
arate missiles to destroy the enemy target. During the mission, we
consider the novelty which extends the effective range of enemy
SAM missiles. This violates the assumption of the friendly force’s
perception and default planning models which underestimate the
safe distance from the enemy SAM sites. As a result, the protagonist
team led by Maverick is shot down by unexpected enemy weapons
because they flew too close to the enemy, assuming they were at a
safe distance.

To allow PDDL+ planning, required by the Hydra architecture, in
the AFSIM environment, the environment is modified to resemble
an OpenAI Gym interface [4] through a Python framework, where
real time is segmented into discrete steps, missions are segmented
into episodes (battles in military terms), and multiple episodes are
segmented into a tournament (campaign in military terms).

Following the theory of Occam’s razor [23], the states and actions
will be limited to the ones relevant to the current mission using
domain knowledge. Primitive actions will be combined into higher
level actions. For example, actions such as tasking and routing a
friendly surveillance and reconnaissance autonomous drone to gain
information on the operation area will be automatically performed
at the beginning of a battle.

The observations of enemy entities for both experiments will be
assumed to be sensed by the surveillance drone in the beginning
of all battles. There will be 10 enemy radars acting as enemy sen-
sors (used by different military commands in the enemy chain of
command), a supply depot, an ammo storage station, a SAM site,
a chemical storage unit, a command post, a defense headquarters.
The mission area and entities are shown in figure 2. The teal circle
represents the starting location of the F-35 aircraft, it also represents
the starting location of the autonomous surveillance drone, the red
rectangle with a teal outline represents the enemy SAM location,
the red circle with a teal outline represents where the target radar
station is located, the the red triangles denote enemy radar sensors,
and the red pentagons represent all other enemy entities.



4 PLANNING DOMAIN FORMALIZATION
The planning domain requires a transition system such as a simu-
lation environment to generate a plan while maximizing a utility
function such as shortest path or highest reward. Because nov-
elty detection, characterization, and accommodation is the main
research, we also require a formal definition for the novelty re-
sponse problem. Following the definition of a planning domain
and a concept of novelty, we use the Hydra methodology to cal-
culate the degree in which the planning model is consistent with
the environment (for our case a open-real-world-like high fidelity
simulator), and finally we define a set of MMOs to facilitate a meta
model repair until the model becomes more consistent with the
environment. Formally:

Definition 1. Environment Let E be the environment, a transi-
tion system defined as:

𝐸 = ⟨S,SI ,A, E,G,V⟩ (1)

where S is the infinite set of states, SI ⊆ S is a set of possible initial
states, A is a set of possible actions, E is a set of possible events, G is
a set of possible goals, andV is a set of domain variables including
both discrete and numeric.

Definition 2. Novelty response problem Following [24], let
∏

be the novelty response problem defined as:∏
= ⟨𝐸, 𝜑, 𝑡𝑁 ⟩ (2)

where E is the transition system environment, 𝜑 is the novelty func-
tion, and 𝑡𝑁 is a non-negative integer specifying the battle in which
novelty 𝜑 is introduced within a tournament. In the military domain
we operate in, the terms battle is interchangeable with episode, and
campaign is interchangeable with tournament.

Definition 3. Consistency Let C be the consistency checking
function defined as:

𝐶 :M × 𝐸 × 𝜋 × 𝑡𝑒 × 𝑡𝑜 × T → R≥0 (3)

where M is the PDDL+ model of mapping E to the realistic high
fidelity simulator, 𝜋 is a sequential plan that solves solves E to reach
G, 𝑡𝑒 is the set of trajectory [22] we expect to observe using modelM
to solve the planning problem, 𝑡𝑜 is the set of trajectory we actually
observe in the environment when applying the plan 𝜋 , and T is a
threshold, where if the distance between 𝑡𝑒 and 𝑡𝑜 exceeds, we can
assume novelty is detected. The threshold is a hyperparameter that
can be "consistency shaped" based on domain knowledge. In theory,
consistency checking does not required domain knowledge, in practice,
it requires domain knowledge to reduce computation requirements.
The domain knowledge does not map one to one to unknown novelty,
but rather to parameters an agent has at its disposal to detect and
accommodate the novelty.

AModel Manipulation Operator (MMO) is a single change to the
agent’s internal model. In this work we limit the scope of MMOs
to modifying the values of variables present in the agent’s internal
model by a predetermined interval. MMOs are then used in the
model repair mechanism to accommodate novelty by adapting the
agent’s internal model. In fact, repair finds a sequence ofMMOs that,
when applied to the agent’s internal modelM yields an updated
modelM′ which accounts for the introduced novelty.

Definition 4. MMO In the scope of this work, an MMO is a
function𝑚 : 𝑉 ×Δ𝑉 → 𝑉 , where𝑉 ∈ R is a numeric variable present
in the agent’s modelM, and Δ𝑉 ∈ R is the numeric change to the
value by some interval.

In practice, an MMO is applied in a straightforward manner
𝑣 (M) = 𝑣 (M) ± Δ𝑣 (M) where 𝑣 (M) is the numeric value of
some variable in model M and Δ𝑣 (M) is a predefined change
interval specific to that model variable 𝑣 (M). By taking advantage
of notation, this approach can also be extended to propositions
𝑝 (M) by casting each one as a numeric variable 𝑣 (𝑝 (M)). After
MMOs have been applied, the variable is then re-cast into a true
proposition such that 𝑝 (M) = 𝑇𝑟𝑢𝑒 if 𝑣 (𝑝 (M)) > 0 and 𝑝 (M) =
𝐹𝑎𝑙𝑠𝑒 otherwise.

Following from the above MMO definition, a repair 𝑅 is a func-
tion which takes in a modelM and a sequence of MMOs {𝑚} that
modify the model’s variables. The repair returns the modifiedmodel
M′.

Definition 5. Repair Let repair 𝑅 be a function 𝑅(M, {𝑚}) →
M′, whereM is the model of the environment E, and {𝑚} is the a
set of MMOs defined over modelM. The repair function yields an
updated modelM′ which is generated by applying {𝑚} to the default
modelM

5 IMPLEMENTING NOVELTY
ACCOMMODATING AGENTS

5.1 High Level Architecture
Figure 1 describes the components and information flow of the
agent architecture. The PDDL+ model generator automatically
builds a PDDL+ problem from initial observations and intrinsic
assumptions about the environment. A full modelM is created by
combining the auto-generated problem with a general manually-
defined PDDL+ domain. A PDDL+ planner will solve the modelM
for a plan 𝜋 , an execution engine will translate the plan into instruc-
tions executable in the AFSIM environment. After each battle 𝑡𝑁 in
AFSIM, the agent will calculate a consistency score𝐶 comparing the
expected outcomes 𝑡𝑒 and observed outcomes 𝑡𝑜 . If consistency 𝐶
exceeds threshold T it is likely that the underlying environment 𝐸
has been substantially altered by novelty, beyond interference from
noisy sensor readings. The agent then starts the meta model repair
process which adjusts modelM by iteratively applying MMOs𝑚.

Figure 1: Agent Architecture



5.2 PDDL+ and Execution Engine
In order to utilize the Hydra novelty detection, characterization,
and accommodation, it is required to define a PDDL+ model and
search for a plan to execute in the pre-novelty environment E.

The continuous mission area space is discretized into a grid space
as shown in figure 2. The infinitely large and continuous action
space is discretized into five actions: move in four directions one cell
and fire the JDAM (i.e., missiles with additional precision guidance
kit) when you are within range of 1 cell (28,000 meter JDAM range
[2], while a cell length is estimated at 25,000 meters). The actions
can be further broken down into similar lower level actions that
will be used to execute actions in AFSIM. There will be a PDDL+
event of the F-35 aircraft being shot down by the enemy SAM if it
flies within range of the enemy SAM.

Figure 2: Mission Area Grid And Entities: teal circle is F-35
aircraft and autonomous surveillance drone, red rectangle
with teal outline is the enemy SAM, red circle with teal out-
line is the target radar station, red triangles are enemy radar
sensors, and red pentagons are all other enemy entities

States, time, actions are all continuous variables in AFSIM: The
continuous actions controlling air movement with high fidelity
physics are taken in a continuous timeline. Time is continuous and
there is no concept of a discrete time tick. Space is continuous and
there is no concept of a discrete grid cell. However, the PDDL+ plan-
ner uses a discretization-based approach to solve planning tasks,
discretizing it into a geo-spatial grid, time step, and discrete actions.
The execution engine will use a low-level planner to translate the
discrete variables used by the PDDL+ model back into continuous
variables for the environment.

A move command is in one of the four cardinal directions (north,
south, west, and east). Each grid cell will have its location defined
as an integer 𝐼 ⊆ N for the column and row coordinates in the grid.
The engagement area composed of grid cells is irregularly shaped,
meaning not a rectangular shape. The centroid point of each grid
cell is mapped to a geographical latitude and longitude, and the
execution engine will calculate the geo-coordinate and route the
F-35 between cells. The F-35 position will be kept track using a
column and row integer 𝐼 ⊆ N.

Transitioning actions between the continuous time in the real-
world-like high fidelity environment and the discrete time in our
PDDL+ planner provides an engineering challenge. To solve this
problem, we 1) take the continuous timeline and divide it into
discrete time ticks, which are chosen as a hyperparameter of the
PDDL+ planner (denoted as Δ𝑡 ).

The domain contains move actions, which can route each air-
craft between cells in cardinal directions (north, south, east, and
west). A fire weapon action is also available for the agent, with
the precondition that the friendly plane is in range of its target.
The maximum range to fire a specific weapon is calculated using
Manhattan distance between the grid cells:

|𝑝𝑟𝑜𝑤 − 𝑡𝑟𝑜𝑤 | + |𝑝𝑐𝑜𝑙 − 𝑡𝑐𝑜𝑙 | ≤ 𝑝𝑟 (4)

Where 𝑝𝑐𝑜𝑙 is the column number of the F-35 aircraft, 𝑡𝑐𝑜𝑙 is the
column number of the target, 𝑝𝑟𝑜𝑤 is the row number of the F-35
aircraft, 𝑡𝑟𝑜𝑤 is the row number of the target, and 𝑝𝑟 is the range
of the JDAM missile.

Similarly, an event is defined where the friendly plane will be
shot down if it is in range of the enemy SAMmissile range. Note this
is using our internal model of the enemy weapon range. A PDDL+
event will have a precondition where the friendly plane will be
shot down if we move within the enemy SAM range represented
in Manhattan distance, with equation:

|𝑠𝑐𝑜𝑙 − 𝑝𝑐𝑜𝑙 | + |𝑠𝑟𝑜𝑤 − 𝑝𝑟𝑜𝑤 | ≤ 𝑠𝑟 (5)

Where 𝑝𝑐𝑜𝑙 is the column number of the F-35 aircraft, 𝑠𝑐𝑜𝑙 is the
column number of the enemy SAM, 𝑝𝑟𝑜𝑤 is the row number of the
F-35 aircraft, 𝑠𝑟𝑜𝑤 is the row number of the enemy SAM, and 𝑠𝑟
is the range of the enemy SAM. The enemy missile range will be
a numeric MMO where our agent can adjust the internal model
when dealing with novelty.

The Manhattan distance (w.r.t. grid cells) of the friendly plane
range is 𝑝𝑟 = 1 and enemy SAM range is 𝑠𝑟 = 2 is shown in Figure
3.

Because the continuous state space is translated into a discrete
grid, the enemy SAM is likely not in the exact center of a cell,
therefore, the range may include additional or fewer cells than a
perfect circle, the model with the longest possible range of the
enemy SAM and shortest possible range of our F-35 aircraft will be
used to err on the side of caution.

A scheduler will parse the plan involving every action of ev-
ery agent, and convert each routing end point location to a geo-
coordinate with latitude and longitude values. The center point of
each grid cell, which we can get information from the environment,
is mapped to geo-coordinates in the AFSIM environment, and we
convert the PDDL+ plan into a AFSIM plan that can be executed
in sequential order according to the PDDL+ plan. For example, a
particular grid cell can be queried from the environment to map to
geographic coordinates (60.14405310652675, 169.73387958469417).
This data will be encoded into a pre-existing table of domain knowl-
edge.

We introduce a hyperparameter 𝑡 which designates the time
delay to execute actions between aircraft. We set 𝑡 to 18 seconds.
5 nautical miles generally allows plenty of room and distance to
maneuver, for example, an evasive maneuver if an emergency was
to happen, and not cause an air to air collision between the leader



and the wingman. The aircraft speed is about 536 meters per second
[25], and 5 nautical miles is 9260 meters, thus 9260𝑚/536𝑚𝑠 = 18
seconds.

Details of the PDDL+ implementation, scheduling, and execution
can be found at [6].

5.3 Novelty Injection
We ran campaigns experiments

∏
consisting of 20 battles each.

The novelty 𝜑 was injected into
∏

in the second battle (𝑡𝑁 = 2) for
both domains. The introduced novelty are changes to the value of
the enemy SAM range, from 40,000 meters to 90,000 meters. The
expected result is the SAM range increasing from 2 cells up to 4
cells (depending on the SAM exact location), as each cell length
is estimated to be 25,000 meters. Further novelty examples and
injections can be found in the novelty paper [5]. And the detection
and accommodation to such paper will be addressed in future work.

5.4 Consistency Checking
The consistency checking 𝐶 ∈ R≥0 is a calculated number repre-
senting how accurate the modelM represents the realistic high
fidelity simulator transition system 𝐸. Consistency 𝐶 = 0 means
that the agent is operating on an internal modelM that is perfectly
aligned with the simulation environment 𝐸. The higher the value of
𝐶 , the less accurate the agent internal model represents the environ-
ment E. 𝑡𝑒 is simulating using the PDDL+ modelM. 𝑡𝑜 is generated
by converting direct observations of the environment into PDDL+
to calculate 𝐶 using equation 6 (because 𝑡𝑒 and 𝑡𝑜 has to be the
same datatype). While comparing every single variable V will be
ideal in catching any model inconsistency, however, computation
limitations of calculating∞ amounts of Δ𝑉 makes that infeasible,
so we focus on comparing the MMOs and the Euclidean distance
between the trajectories of the definedMMOs that are defined using
domain knowledge.

𝐶 =
∑︁
𝑖

𝛾𝑖 · ∥𝑡𝑜 (𝜋, 𝐸) [𝑖] − 𝑡𝑒 (𝜋,M)[𝑖] ∥ (6)

where 𝑡𝑜 (𝜋, 𝐸) is the observed trajectory of executing the plan 𝜋

in the environment E. And 𝑡𝑒 (𝜋,M) is the expected trajectory of
executing the plan 𝜋 using the PDDL+ model. 0 < 𝛾 < 1 is a
discount factor to account for compounding errors of Euclidean
distances for later states.

5.5 Meta Model Repair
The meta model repair is triggered once the consistency 𝐶 of the
default model M exceeds the threshold T . Repair aims to alter
the model M so that the expected trajectory 𝑡𝑒 (yielded by the
planner, based onM) is consistent with the trajectory 𝑡𝑜 observed
when executing plan 𝜋 in simulation environment 𝐸. As stated in
[24], defining appropriate MMOs is the key to a good repair that
leads to good novelty accommodation. Although monitoring every
variable 𝑣 ∈ M will create the most general agent, the search space
might become too large to find feasible repairs in a reasonable time.
Thus, currently, model variables which MMOs will modify during
repair are chosen manually. In the presented missions, as a proof
of concept, we labeled the missile range variable as "repairable" via
MMOs being one of the most mission critical variables 𝑉 in our

environment 𝐸. The main observation of interest is whether the
F-35 aircraft and the enemy target is destroyed. Consistency score
will yield 𝐶 = 1.0 if the F-35 aircraft is destroyed and the enemy
target is fully functional, and a 𝐶 = 0.0 score if the F-35 aircraft
survives and the enemy target asset is destroyed.

Algorithm 1: PDDL+ meta model repair algorithm
𝐶𝑏𝑒𝑠𝑡 ← EstimateConsistency(M, 𝜋 , 𝑡𝑒 , 𝑡𝑜 , T )
while 𝐶𝑏𝑒𝑠𝑡 ≥ T do

forall𝑀𝑀𝑂 ∈𝑚 do
M′ ← 𝑅(M, 𝑀𝑀𝑂)
𝐶𝑛𝑒𝑤 ← EstimateConsistency(M, E, 𝜋 , 𝑡𝑒 , 𝑡𝑜 , T )
if 𝐶𝑛𝑒𝑤 < 𝐶𝑏𝑒𝑠𝑡 then

𝐶𝑏𝑒𝑠𝑡 ← 𝐶𝑛𝑒𝑤 if 𝐶𝑏𝑒𝑠𝑡 ≤ T then
M←M′

end
end
UndoUpdateM(𝑀𝑀𝑂)

end
returnM

end

The search-based algorithm formodel repair is domain-independent.
The model repair will follow algorithm 1, which shows the pseudo-
code for the meta model repair. First, we check the consistency
score 𝐶𝑏𝑒𝑠𝑡 , if 𝐶𝑏𝑒𝑠𝑡 > T then we repair the MMOs {m} one by
one. For each repaired MMO, we check the consistency 𝐶𝑛𝑒𝑤 , if
any 𝐶𝑛𝑒𝑤 is smaller than the best consistency score 𝐶𝑏𝑒𝑠𝑡 , then we
deem the MMO repair as successful and update the modelM until
we find the smallest𝐶𝑏𝑒𝑠𝑡 possible, which reflects the least amount
of model inconsistency.

The procedure turns this problem into a search task which it-
eratively considers different changes to the model via predefined
MMOs (e.g., increase range by 1 cell, increase range by 2 cells,
decrease range by 1 cell, etc.). The goal of this search is to suffi-
ciently reduce the inconsistency between expected and observed
state trajectories. The procedure is adapted from Stern et al., 2022,
“Model-Based Adaptation to Novelty for Open-World AI”.

6 EXPERIMENT SETUP
Experimental evaluation was conducted on a machine with MacOS,
an Intel Core i7 2.6 GHz 6 core processor with 16 GB 2667 MHz
DDR4 memory.

Since the baseline agents have no concept of novelty, detection
and false positives are both 0%. And the mission is a total failure
37% of the time, meaning the F-35 is destroyed, and the target is still
fully functional. An interesting result is that the win percentage
is relatively high, succeeding in the mission over half of the tries.
This leaves an interesting final decision whether to execute the
mission in the next battle or not, knowing the mission can either
be a successful strike or end in total failure, without any reasonable
explanation.

6.1 Novelties
In this mission a F-35 aircraft is given a task to strike a radar station
device roughly 90,000 meters south-west of a SAM missile launcher



in enemy territory. A plan is generated using a model of the world
given to it before the mission begins. In the scenario the agent
can successfully plan a strike given its prior information is correct.
However, when the information it assumes to be true is incorrect,
it is unable to develop a successful plan and the F-35 aircraft is
destroyed by the SAM site. Figure 3 shows the pre-novelty and
post-novelty range of the SAM, the dotted yellow line shows the pre-
novelty range, and the dotted purple line shows the post-novelty
range.

Figure 3: SAM Range Before And After Novelty

A 20 battle campaign
∏

with novelty 𝜑 injected in the second
battle (𝑡𝑁 = 2) is ran, every battle it generates a plan using the agent
internal model of the world. In the pre-novelty scenarios, the agent
can successfully generate a plan to complete the mission. The agent
search statistics is shown in Table 2.

After novelty injection, the SAMmissile range is increased, using
the old model, it is unable to develop a successful plan and the
aircraft risks being destroyed by the SAM upon entering the new
SAM range. Due to environment stochasticity described in the
related work section, it takes the risk of entering the SAM without
knowing it has and successfully executes the mission 15 times,
and is destroyed 4 times post-novelty. The performance of novelty
accommodation is shown in Table 1. Since the baseline agents have
no concept of novelty, detection and false positives are both 0%. And
the mission becomes a total failure 21% of the time, resulting in the
F-35 aircraft being destroyed and the enemy target still functional.
An interesting result is that the win % is very high, succeeding in
the mission at a high rate. Perhaps making a human decision to
execute the mission difficult knowing the statistics, as 79% of the
time, it results in a mission success.

7 RESULTS
Of the 20 battle campaign

∏
, the first battle the agent successfully

completes the mission with no novelty. The second battle includes
the missile range novelty, and the agent proceeds to complete the
mission, the reason is due to environment stochasticity of high fi-
delity simulators mentioned in the related work section, the aircraft
can unknowingly takes the risk of entering the SAM missile range
area without knowing it has and successfully executes the mission

sometimes, but is destroyed other times without knowing why.
The agent performance of novelty detection and accommodation
is shown in Table 1 using performance measurement described in
[21].

For the fourth battle through the last, the consistency function C
passes the threshold T , the consistency score C becomes 1 because
the distance between 𝑡𝑒 and 𝑡𝑜 is now 1 for losing the aircraft last
battle, and repair is turned on. The SAM range is the numeric MMO
{m} monitored in the repair R; the numeric value of the SAM range
is adjusted to increase from 2 cells to 4 cells. The MMO change ΔV
resulted in decreased consistency score C and the repair is deemed
successful, it is also able to characterize the novelty by repairing "ss-
weapon-range" from 2 to 4. With the repair, the agent will navigate
around the risky area starting from the next battle after novelty
is detected. As shown in figure 4, the agent is able to destroy the
enemy target with a new route after repairing the PDDL+ model.
The yellow solid line shows the pre-novelty route, while the purple
solid line denotes the post-novelty route. The grey symbol of a
bomb with dotted teal outlines represents the location where the
F-35 fired the JDAM missile from, in both cases the F-35 aircraft
proceeds to return to home base after firing the JDAM.

Figure 4: Agent Plan Before And After Novelty

The performance of the novelty accommodating agent is in Table
1. Of the 20 battles, compared to the baseline agent, our novelty
detection false positive rate is still 0%. The false negative rate de-
creased to 5%. The pre-novelty win rate is 100%, and the post novelty
win rate increases to 95%. In this tactical mission result, there are no
complications, the agent completes the mission and is not destroyed.
Novelty detection rate increases to 95%.

The novelty accommodating agent search statistics is shown in
Table 3. The novelty accommodating plan explored less states but
the plan is longer due to navigating around a longer range. While
the low level primitive actions in AFSIM are still combined and
abstracted, routing options are fixed to geo-coordinates defined as
the centroids of each grid cell, and all the primitive firing actions
are combined into one action for a range of one cell.



Table 1: Performance measurement of baseline and novelty
accommodating agents

Baseline Hydra
False neg% 21 5
Win% post-Nov 79 95
Win% pre-Nov 100 100
Detection% 0 95
False pos% 0 0

Table 2: Pre-Novelty Agent Plan

Planning Time Plan Length States Explored
19.118 33 2632

Table 3: Novelty Accommodating Agent Plan

Planning Time Plan Length States Explored
18.312 41 2421

8 CONCLUSION AND FUTUREWORK
We demonstrated a prototype framework to utilize the Hydra AI
system in a realistic high fidelity simulator that is being used to
execute intricate military scenarios, and novelties that resemble
open-real-world problems. Our results prove that model-based AI
systems like Hydra can be adapted from smaller-scoped games with
hypothetical game related novelties to more realistic applications.

The next step towards accommodating real open-world novelty
is to extend this framework and model a richer domain includ-
ing additional real-world novelties and complexity such as hidden
enemy units, faulty sensors, unknown delays, different types of
weapons, different environmental effects, different capabilities by
enemy fighting units, complex routing for different mission ob-
jectives, and unknown civilian obstacles. Furthermore, in future
scenarios, we plan to add more actions, agents, and goal complexity
to the scenario, to allow the agent to explore more complex deci-
sions and novelty detection, characterization, and accommodation
opportunities.
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