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ABSTRACT
State-of-the-art methods for solving 2-player zero-sum imperfect

information games rely on linear programming or regret minimiza-

tion, though not on dynamic programming (DP) or heuristic search

(HS), while the latter are often at the core of state-of-the-art solvers

for other sequential decision-making problems. In partially observ-

able or collaborative settings (e.g., POMDPs and Dec-POMDPs), DP

and HS require introducing an appropriate statistic that induces a

fully observable problem as well as bounding (convex) approxima-

tors of the optimal value function. This approach has succeeded in

some subclasses of 2-player zero-sum partially observable stochas-

tic games (zs-POSGs) as well, but how to apply it in the general case

still remains an open question. We answer it by (i) rigorously defin-

ing an equivalent game to work with, (ii) proving mathematical

properties of the optimal value function that allow deriving bounds

that come with solution strategies, (iii) proposing for the first time

an HSVI-like solver that provably converges to an 𝜖-optimal solu-

tion in finite time, and (iv) empirically analyzing it. This opens the

door to a novel family of promising approaches complementing

those relying on linear programming or iterative methods.
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1 INTRODUCTION
Solving imperfect information sequential games is a challenging

field with many applications from playing Poker [20] to security
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games [1]. We focus on finite-horizon 2-player zero-sum partially

observable stochastic games (zs-POSGs), an important class of

games that is equivalent to that of zero-sum extensive-form games

(zs-EFGs) [23]
1
. From the viewpoint of (maximizing) player 1, we

aim at finding a strategy with a worst-case expected return (i.e.,

whatever player 2’s strategy) within 𝜖 of the Nash equilibrium value

(NEV).

A first approach to solving a zs-POSG is to turn it into a zs-

EFG addressed as a sequence form linear program (SFLP) [4, 16, 31],

giving rise to an exact algorithm. A second approach is to use

an iterative game solver, i.e., either a counterfactual-regret-based

method (CFR) [5, 35], or a first-order method [13, 19], both coming

with asymptotic convergence properties. CFR-based approaches

now incorporate deep reinforcement learning and search, some

of them winning against top human players at heads-up no limit

hold’em poker [5, 6, 22]. A third approach, proposed by Wiggers

[32], is to use two parallel searches in strategy space, one per player,

so that the gap between both strategies’ security levels (i.e., the

values of their opponent’s best responses) bounds the distance to

the NEV.

In contrast, dynamic programming and heuristic search have

not been applied to general zs-POSGs, while often at the core of

state-of-the-art solvers in other problem classes that involve Mar-

kovian dynamics, partial observability andmultiple agents (POMDP

[24, 26], Dec-POMDP [11, 28], or subclasses of zs-POSGs with sim-

plifying observability assumptions [2, 8, 9, 12, 14, 15]). They all rely

on some statistic that induces a fully observable problem whose

value function (𝑉 ∗) exhibits continuity properties that allow deriv-

ing bounding approximations. Wiggers et al. [33, 34] progress in

this direction for zs-POSGs by demonstrating an important con-

tinuity property of the optimal value function, and proposing a

reformulation as a particular equivalent game. We work in a similar

direction, (1) using a game with different observability hypotheses,

(2) proving theoretical results they implicitly rely on, and (3) build-

ing on some of their results to derive an HSVI-like algorithm solving

the zs-POSG.

Section 2 presents some necessary background, including the

concept of occupancy state [11, 33] (i.e., the probability distribution

over the players’ past action-observation histories), and properties

that rely on it. Then, Section 3 describes theoretical contributions.

1
Note: POSGs are equivalent to the large class of “well-behaved” EFGs as defined by

Kovařík et al. [18].
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First, we rigorously reformulate the problem as a non-observable

game, and demonstrate that the Nash equilibrium value can be

expressed with a recursive formula, which is a required tool for DP

and HS (Sec. 3.1). Second, we exhibit novel continuity properties

of optimal value functions and derive bounding approximators, a

second tool made necessary due to the continuous state space of

the new game, before showing that these approximators come with

valid solution strategies for the zs-POSG (Sec. 3.2). Third, we adapt

Smith and Simmons’ [27] HSVI’s algorithmic scheme to 𝜖-optimally

solve the problem in finitely many iterations (Sec. 3.3). Section 4

presents an empirical analysis of the approach.

2 BACKGROUND
Here, we first give basic definitions about zs-POSGs, including the

solution concept at hand. Then we introduce an equivalent game

where a state corresponds to a statistic summarizing past behaviors,

which leads to some important properties of the game’s optimal

value.

2.1 zs-POSGs
Definition 2.1 (zs-POSGs). As illustrated through a dynamic influ-

ence diagram in Figure 1, a (2-player) zero-sum partially observable

stochastic game (zs-POSG) is defined by a tuple

⟨S,A1,A2,Z1,Z2, 𝑃, 𝑟, 𝐻,𝛾, 𝑏0⟩, where
• S is a finite set of states;

• A𝑖
is (player) 𝑖’s finite set of actions;

• Z𝑖
is 𝑖’s finite set of observations;

• 𝑃
𝑧1,𝑧2

𝑎1,𝑎2
(𝑠′ |𝑠) is the probability to transition to state 𝑠′ and

receive observations 𝑧1 and 𝑧2 when actions 𝑎1 and 𝑎2 are

performed while in state 𝑠;

• 𝑟 (𝑠, 𝑎1, 𝑎2) is a (scalar) reward function;

• 𝐻 ∈ N is a (finite) temporal horizon;

• 𝛾 ∈ [0, 1] is a discount factor; and
• 𝑏0 is the initial belief state, i.e., a probability distribution over

states at 𝑡 = 0.

𝑆𝑡start 𝑆𝑡+1 𝑆𝑡+2

𝑍 1

𝑡 𝑍 1

𝑡+1 𝑍 1

𝑡+2

𝑍 2

𝑡 𝑍 2

𝑡+1 𝑍 2

𝑡+2

𝐴1

𝑡 𝐴1

𝑡+1

𝐴2
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𝑟 (𝑠, 𝑎1, 𝑎2)

𝑃
𝑧1,𝑧2

𝑎1,𝑎2
(𝑠′ |𝑠)
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𝑃
𝑧1,𝑧2

𝑎1,𝑎2
(𝑠′ |𝑠)

Hidden

1’s viewpoint
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Figure 1: Dynamic influence diagram representing the evolu-
tion of a zs-POSG

From the Dec-POMDP, POSG and EFG literature, we use the

following concepts and definitions:

\𝑖𝜏 = (𝑎𝑖
0
, 𝑧𝑖

1
, . . . , 𝑎𝑖

𝜏−1, 𝑧
𝑖
𝜏 ) is a length-𝜏 action-observation history

(aoh) for 𝑖 . We note Θ𝑖
𝜏 the set of all aohs for player 𝑖 at

horizon 𝜏 , so that any aoh \𝑖𝜏 is in ∪𝐻−1
𝑡=0

Θ𝑖
𝑡 .

𝛽𝑖𝜏 is a (behavioral) decision rule (dr) at 𝜏 for 𝑖 , i.e., a mapping

from private aohs in Θ𝑖
𝜏 to distributions over private actions.

𝛽𝑖𝜏 (\𝑖𝜏 , 𝑎𝑖 ) is the probability to pick 𝑎𝑖 when facing \𝑖𝜏 .

𝛽𝑖
𝜏 :𝜏 ′ = (𝛽

𝑖
𝜏 , . . . , 𝛽

𝑖
𝜏 ′ ) is a behavioral strategy for 𝑖 from time step 𝜏

to 𝜏 ′ (included).

When considering both players, the last 3 concepts become:

𝜽𝜏 = (\1𝜏 , \2𝜏 ) (∈ 𝚯 = ∪𝐻−1
𝑡=0

𝚯𝑡 ), a joint aoh at 𝜏 ,

𝜷𝜏 = ⟨𝛽1𝜏 , 𝛽2𝜏 ⟩ (∈ B = ∪𝐻−1
𝑡=0
B𝑡 ), a decision rule profile, and

𝜷𝜏 :𝜏 ′ = ⟨𝛽1𝜏 :𝜏 ′ , 𝛽
2

𝜏 :𝜏 ′ ⟩, a behavioral strategy profile.

Nash Equilibria. Here, player 1 (respectively 2) wants to maximize

(resp. minimize) the expected return, or value, of strategy profile

𝜷
0:𝐻−1, defined as the discounted sum of future rewards, i.e.,

𝑉0 (𝜷0:𝐻−1) = 𝐸

[
𝐻−1∑︁
𝑡=0

𝛾𝑡𝑅𝑡 | 𝜷0:𝐻−1

]
,

where 𝑅𝑡 is the random variable associated to the instant reward at

𝑡 . This leads to the solution concept of Nash equilibrium strategy

(NES).

Definition 2.2 (Nash Equilibrium). The strategy profile 𝜷∗
0:𝐻−1 =

⟨𝛽1∗
0:𝐻−1, 𝛽

2∗
0:𝐻−1⟩ is a NES if no player has an incentive to deviate,

which can be written:

∀𝛽1
0:𝐻−1, 𝑉0 (𝛽

1∗
0:𝐻−1, 𝛽

2∗
0:𝐻−1) ≥ 𝑉0 (𝛽

1

0:𝐻−1, 𝛽
2∗
0:𝐻−1) and

∀𝛽2
0:𝐻−1, 𝑉0 (𝛽

1∗
0:𝐻−1, 𝛽

2∗
0:𝐻−1) ≤ 𝑉0 (𝛽

1∗
0:𝐻−1, 𝛽

2

0:𝐻−1) .

In such a game, all NESs have the same Nash-equilibrium value

(NEV), 𝑉 ∗
0

def

= 𝑉0 (𝛽1∗
0:𝐻−1, 𝛽

2∗
0:𝐻−1). Our specific objective is to find

an 𝜖-NES, i.e., a behavioral strategy profile such that any player

would gain at most 𝜖 by deviating.

Why writing a Bellman Optimality Equation is Hard. Our approach
requires writing Bellman optimality equations. The main obsta-

cle to achieve this is to find an appropriate characterization of a

subproblem that allows

(1) predicting both the immediate reward and the next possible

subproblems given an immediate decision;

(2) connecting a subproblem’s solution with solutions of its own

(lower-level) subproblems; and

(3) prescripting a solution strategy for the subproblem built on

solutions of lower-level subproblems.

In our setting, a player’s aoh does not characterize a subproblem

since her opponent’s strategy is also required to predict the expected

reward and the next aohs. For their part, joint aohs allow predicting

next joint aohs given both player’s immediate decision rules, but

would not be appropriate either, since player 𝑖 cannot decide how

to act when facing some individual aoh \𝑖𝜏 without considering all

possible aohs of his opponent ¬𝑖 .
If reasoning on all possible executions rather than one execution

at a time, partial behavioral strategy profiles (sequences of behav-

ioral decision rule profiles from 𝑡 = 0 to some 𝜏) contain enough
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nodes indistinguishable to 𝑃2

Figure 2: Simplified tree representation of the sequentialized
Matching Pennies game. Irrelevant actions, noted ∗, allow
merging edges with the same action for (i) player 2 at 𝑡 = 0,
and (ii) player 1 at 𝑡 = 1. Notes: (a) Due to irrelevant actions,
this game can be seen as an Extensive Form Game, despite
players acting simultaneously. (b) Players only know about
their past action history (in this observation-free game).

information to completely describe the situation at 𝜏 , and are thus

necessarily predictive. We still need to demonstrate that they are

connected, despite decision rules not being public, and prescriptive,

despite the need to address global-consistency issues illustrated in

the following example.

Example 1. Matching pennies is a well-known 2-player zero-sum

game in which each player has a penny and secretly chooses one

side (head or tail). Then, both pennies sides are revealed, and player

1 wins (payoff of +1) if both chosen sides match and looses (payoff

of −1) if not.
We here formalize this game as a zs-POSG (as illustrated in

Figure 2) where player 1 actually picks his action at 𝑡 = 0, and

player 2 at 𝑡 = 1. Hence the tuple ⟨S,A1,A2,Z1,Z2, 𝑃, 𝑟, 𝐻,𝛾, 𝑏0⟩
where:

• S = {𝑠𝑖 , 𝑠ℎ, 𝑠𝑡 }, where 𝑠𝑖 is the initial state, and 𝑠ℎ and 𝑠𝑡
represent a memory of 1’s last move: respectively "head" or

"tail";

• A1 = A2 = {𝑎ℎ, 𝑎𝑡 } for playing "head" (𝑎ℎ) or "tail" (𝑎𝑡 );

• Z1 = Z2 = {𝑧𝑛} a "none" trivial observation;
• 𝑃𝒛𝒂 (𝑠′ |𝑠) = 𝑇 (𝑠, 𝒂, 𝑠′) · O(𝒂, 𝑠′, 𝒛), using the next two defini-

tions;

• 𝑇 is deterministic and such that (· is used to denote "for all")

– 𝑇 (·, ·, 𝑎ℎ) = 𝑠ℎ ,

– 𝑇 (·, ·, 𝑎𝑡 ) = 𝑠𝑡 ;

• O is deterministic and always returns "𝑧𝑛";

• 𝑟 is such that

– 𝑟 (𝑠𝑖 , ·, ·) = 0,

– 𝑟 (𝑠𝑡 , ·, 𝑎𝑡 ) = 𝑟 (𝑠ℎ, ·, 𝑎ℎ) = +1,
– 𝑟 (𝑠𝑡 , ·, 𝑎ℎ) = 𝑟 (𝑠ℎ, ·, 𝑎𝑡 ) = −1;
• 𝐻 = 2;

• 𝛾 = 1;

• 𝑏0 is such that the initial state is 𝑠𝑖 with probability 1.

Let us then assume that both players’ drs at 𝑡 = 0 are fixed, with

𝛽1
0
randomly picking 𝑎𝑡 or 𝑎ℎ (i.e., it induces a NES whatever his dr

at 𝑡 = 1), so that, at 𝑡 = 1, we face a "subgame" where any strategy

profile ⟨𝛽1
1:1
, 𝛽2

1:1
⟩ is a NES profile with Nash equilibrium value 0.

In particular, 2 can pick a deterministic strategy 𝛽2
1:1

, which will be

said to be locally consistent. Yet, for 2, such a NES in the subgame at

𝜏 = 1 is not necessarily globally consistent, i.e., it may not be part of

a NES for the original game (i.e., starting from 𝜏 = 0). Intuitively, in

such global-consistency issues [17, 25] (also called safety issues [7]),

the choices made at latter time steps do not account for possible

deviations from the opponent at earlier time steps.

As detailed in the next section, we will characterize a subprob-

lem not with the raw data of partial strategy profiles, but with a

sufficient statistic, and this characterization will be used as the state

of a new dynamic game equivalent to the zs-POSG.

2.2 Occupancy State and Occupancy Markov
Game

We now introduce an equivalent game, in which trajectories corre-

spond to behavioral strategy profiles, and which we will be able to

decompose temporally (and recursively), a first key tool for DP and

HS.

To cope with the necessarily continuous nature of its state space,

we will set this game in occupancy space, i.e., a statistic that sums

up past dr profiles. This will let us derive continuity properties on

which to build point-based approximators.

As Wiggers et al. [33], let us formally define an occupancy state

(os) 𝜎𝜷
0:𝜏−1

as the probability distribution over joint aohs 𝜽𝜏 given

partial strategy profile 𝜷
0:𝜏−1. This statistic exhibits the usualMarkov

and sufficiency properties:

Proposition 2.3 (Adapted from Dibangoye et al. [11, Thm. 1] –

Proof in [10] (App. B.1)). 𝜎𝜷
0:𝜏−1

, together with 𝜷𝜏 , is a sufficient

statistic to compute (i) the next os,𝑇 (𝜎𝜷
0:𝜏−1

, 𝜷𝜏 )
def

= 𝜎𝜷
0:𝜏
, and (ii) the

expected reward at 𝜏 : 𝑟 (𝜎𝜷
0:𝜏−1

, 𝜷𝜏 )
def

= E
[
𝑅𝜏 | 𝜷0:𝜏−1 ⊕ 𝜷𝜏

]
, where

⊕ denotes a concatenation.

Writing from now on 𝜎𝜏 , as short for 𝜎𝜷
0:𝜏−1

, the os associated

with some prefix strategy profile 𝜷
0:𝜏−1, the proof essentially relies

on deriving the following formulas: ∀\1𝜏 , 𝑎1, 𝑧1, \2𝜏 , 𝑎2, 𝑧2,

𝑇 (𝜎𝜏 , 𝜷𝜏 ) ((\1𝜏 , 𝑎1, 𝑧1), (\2𝜏 , 𝑎2, 𝑧2)) (1)

def

= 𝑃𝑟 ((\1𝜏 , 𝑎1, 𝑧1), (\2𝜏 , 𝑎2, 𝑧2) |𝜎𝜏 , 𝜷𝜏 )

= 𝛽1𝜏 (\1𝜏 , 𝑎1)𝛽2𝜏 (\2𝜏 , 𝑎2)𝜎𝜏 (𝜽𝜏 )
∑︁
𝑠,𝑠′

𝑃𝒛𝒂 (𝑠′ |𝑠)𝑏 (𝑠 |𝜽𝜏 ),

where 𝑏 (𝑠 |𝜽𝜏 ) is a belief state obtained by Hidden Markov Model

filtering; and

𝑟 (𝜎𝜏 , 𝜷𝜏 )
def

= 𝐸 [𝑟 (𝑆,𝐴1, 𝐴2) |𝜎𝜏 , 𝜷𝜏 ] (2)

=
∑︁

𝑠,𝜽𝜏 ,𝒂

𝜎𝜏 (𝜽𝜏 )𝑏 (𝑠 |𝜽𝜏 )𝛽1𝜏 (𝑎1 |\1𝜏 )𝛽2𝜏 (𝑎2 |\2𝜏 )𝑟 (𝑠, 𝒂) .

We can then derive, from a zs-POSG, a non-observable zero-sum

game similar to Wiggers et al.’s plan-time NOSG [33, Definition 4],

but without assuming that the players’ past strategies are public.
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Definition 2.4 (zero-sum occupancy Markov Game (zs-oMG)). A

zero-sum occupancy Markov game (zs-oMG)
2
is defined by the tuple

⟨O𝜎 ,B,𝑇 , 𝑟, 𝐻,𝛾⟩, where:
• O𝜎 (= ∪𝐻−1

𝑡=0
O𝜎𝑡 ) is the set of oss induced by the zs-POSG;

• B is the set of dr profiles of the zs-POSG;

• 𝑇 is the deterministic transition function in Eq. (1);

• 𝑟 is the reward function in Eq. (2); and

• 𝐻 and 𝛾 are as in the zs-POSG

(𝑏0 is not in the tuple but serves to define 𝑇 and 𝑟 ).

In this game, as in the zs-POSG, a player’s solution is a behavioral

strategy. Besides, the value of a strategy profile 𝜷
0:𝐻−1 is the same

for both zs-oMG and zs-POSG, so that they share the same 𝜖-NEV

and 𝜖-NESs. We can thus work with zs-oMGs as a means to solve

zs-POSGs.

The following aims at deriving a recursive expression of 𝑉 ∗
0
, as

well as continuity properties.

Bellman Optimality Equation. Despite the os at 𝜏 > 0 not being

accessible to any player, let us define a fictious subgame at 𝜎𝜏 as the

restriction starting from time step 𝜏 under this particular occupancy

state, meaning that we are seeking strategies 𝛽1
𝜏 :𝐻−1 and 𝛽2

𝜏 :𝐻−1.
𝜎𝜏 tells us which aohs each player could be facing with non-zero

probability, and are thus relevant for planning. We can then define

the value function in any os 𝜎𝜏 for any strategy profile 𝜷𝜏 :𝐻−1 as
follows:

𝑉𝜏 (𝜎𝜏 , 𝜷𝜏 :𝐻−1)
def

= 𝐸 [
∞∑︁
𝑡=𝜏

𝛾𝑡−𝜏𝑟 (𝑆𝑡 , 𝐴𝑡 ) |𝜎𝜏 , 𝜷𝜏 :𝐻−1] . (3)

The optimal value of a subgame rooted at 𝜎𝜏 ,𝑉
∗ (𝜎𝜏 ), is thus the

unique NEV for the previous criterion
3
. Wiggers et al. then proved

key continuity properties of 𝑉 ∗ discussed next.

Concavity and Convexity Results. As a preliminary step, Wiggers

et al. decompose an occupancy state 𝜎𝜏 into a marginal term 𝜎
𝑚,1
𝜏

and a conditional term 𝜎
𝑐,1
𝜏 , where

• 𝜎
𝑚,1
𝜏 (\1𝜏 ) =

∑
\ 2

𝜏
𝜎𝜏 (\1𝜏 , \2𝜏 ) is the probability of 1 facing \1𝜏

under 𝜎𝜏 , and

• 𝜎
𝑐,1
𝜏 (\2𝜏 |\1𝜏 ) =

𝜎𝜏 (\ 1

𝜏 ,\
2

𝜏 )
𝜎
𝑚,1
𝜏 (\ 1

𝜏 )
is the probability of 2 facing \2𝜏 under

𝜎𝜏 given that 1 faces \1𝜏 ,

so that 𝜎𝜏 (\1𝜏 , \2𝜏 ) = 𝜎
𝑚,1
𝜏 (\1𝜏 ) · 𝜎

𝑐,1
𝜏 (\2𝜏 |\1𝜏 ). (Symmetric definitions

apply by swapping players 1 and 2.) In addition, let us denote

𝑇 1

𝑚 (𝜎𝜏 , 𝜷𝜏 ) and 𝑇 1

𝑐 (𝜎𝜏 , 𝜷𝜏 ) the marginal and conditional terms as-

sociated to 𝑇 (𝜎𝜏 , 𝜷𝜏 ).
Now, if 1 faces aoh \1𝜏 , knows 2’s future strategy 𝛽

2

𝜏 :𝐻−1, and has

access to 𝜎
𝑐,1
𝜏 (\2𝜏 |\1𝜏 ) for any \2𝜏 , then she faces a POMDP whose

optimal value we denote a2
[𝜎𝑐,1

𝜏 ,𝛽2
𝜏 :𝐻−1 ]

(\1𝜏 ). This leads to defining

the best-response value vector a2
[𝜎𝑐,1

𝜏 ,𝛽2
𝜏 :𝐻−1 ]

, which contains one

component per aoh \1𝜏 , and writing the value of 1’s best response

against 𝛽2
𝜏 :𝐻−1 under 𝜎𝜏 as 𝜎

𝑚,1
𝜏 · a2

[𝜎𝑐,1
𝜏 ,𝛽2

𝜏 :𝐻−1 ]
. But then, because 2

also knows 𝜎𝜏 , she can in fact pick 𝛽2
𝜏 :𝐻−1 to minimize this value,

so that we get the following theorem.

2
We use (i) “Markov game” instead of “stochastic game” because the dynamics are not

stochastic, and (ii) “partially observable stochastic game” to stick with the literature.

3
We will come back to the validity of this point in Section 3.1.

Theorem 2.5 ([33, Thm. 2]). For any 𝜏 ∈ {0 . . 𝐻 − 1}, 𝑉 ∗𝜏 is (i)

concave w.r.t. 𝜎
𝑚,1
𝜏 for a fixed 𝜎

𝑐,1
𝜏 , and (ii) convex w.r.t. 𝜎

𝑚,2
𝜏 for a

fixed 𝜎
𝑐,2
𝜏 . More precisely,

𝑉 ∗𝜏 (𝜎𝜏 ) = min

𝛽2
𝜏 :𝐻−1

[
𝜎
𝑚,1
𝜏 · a2[𝜎𝑐,1

𝜏 ,𝛽2
𝜏 :𝐻−1 ]

]
= max

𝛽1
𝜏 :𝐻−1

[
𝜎
𝑚,2
𝜏 · a1[𝜎𝑐,2

𝜏 ,𝛽1
𝜏 :𝐻−1 ]

]
,

where

a2[𝜎𝑐,1
𝜏 ,𝛽2

𝜏 :𝐻−1 ]
(\1𝜏 )

def

= max

𝛽1
𝜏 :𝐻−1

E
\ 2

𝜏∼𝜎𝑐,1
𝜏 (\ 1

𝜏 ){
𝐻−1∑︁
𝑡=𝜏

𝛾𝑡−𝜏𝑟 (𝑆𝑡 , 𝐴1

𝑡 , 𝐴
2

𝑡 ) | 𝛽1𝜏 :𝐻−1, 𝛽
2

𝜏 :𝐻−1

}
. (4)

An important observation that ensues from this theorem is that

𝑉 ∗𝜏 is concave in 𝜎
𝑚,1
𝜏 and convex in 𝜎

𝑚,2
𝜏 . In practice, however,

such continuity properties alone only allow upper-bounding 𝑉 ∗𝜏
for finitely many conditional terms 𝜎

𝑐,𝑖
𝜏 , thus not for the whole

occupancy space, as required to enable DP and HS in our game.

In the following, we complement Wiggers et al.’s results with

properties of 𝑉 ∗ in subgames, plus continuity properties that help

designing bounding approximators, which will lead us to an HSVI-

like solver.

For convenience, we may replace in the following: (i) subscript

“𝜏 : 𝐻 − 1” with “𝜏 :”, (ii) any function 𝑓 (𝒙) linear in vector 𝒙 with

either 𝑓 (·) · 𝒙 or 𝒙⊤ · 𝑓 (·), (iii) a full tuple with its few elements of

interest, and (iv) an element (a "field") 𝑥 of a specific tuple 𝑡 by 𝑥 [𝑡].

3 THEORETICAL CONTRIBUTIONS
In this section, we demonstrate how to implement dynamic pro-

gramming and heuristic search by (1) rigorously showing that Bell-

man optimality equation (Sec. 3.1) holds, (2) deriving bounding

approximators of two novel optimal value functions, which come

with solution strategies (Sec. 3.2), and (3) proposing a variant of

HSVI that computes (in finite time) a player’s strategy whose value

is within 𝜖 of the zs-POSG’s NEV (Sec. 3.3).

3.1 The Optimal Value Function 𝑉 ∗

and its Recursive Expression
Let us first recall that, contrary to Wiggers et al. [33, Section 5,

Lemma 4], we do not make the strong assumption that past deci-

sion rules can be considered as public (and, thus, we do not assume

that any player knows 𝜎𝜏 ). Indeed, while it is valid in Dec-POMDPs

because the players are willing to coordinate their behaviors, it is a

priori not valid in zs-POSGs, since players are, in the contrary, will-

ing to deceive one another. Safety issues as presented in Example 1

illustrate the possible flaws of such an assumption.

We now discuss the existence of an optimal value function 𝑉 ∗𝜏
and its properties. These results are implicitly used by Wiggers

et al., but it seems important to state and demonstrate them. A first

step is to demonstrate that von Neumann’s minimax theorem [30]

applies when in 𝜎𝜏 , thus justifying the definition of the optimal

(Nash equilibrium) value of a subgame.

Theorem 3.1 (Minimax theorem – Proof in [10](App. C.1.2)). The

subgame defined in Eq. (3) admits a unique NEV

𝑉 ∗𝜏 (𝜎𝜏 )
def

= max

𝛽1
𝜏 :𝐻−1

min

𝛽2
𝜏 :𝐻−1

𝑉𝜏 (𝜎𝜏 , 𝛽1𝜏 :𝐻−1, 𝛽
2

𝜏 :𝐻−1). (5)
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𝑉 (𝜎𝜏 , ·, ·) not being bilinear in the space of behavioral strategies

([10] App. C.1.1), the proof requires reasoning with mixed strate-

gies (for which the bilinearity holds), i.e., distributions over pure

(deterministic) strategies defined over all time steps. Yet, when in a

subgame, we have to reason only on mixed strategies compatible

with the associated occupancy state 𝜎𝜏 (i.e., which ensure that the

os at 𝜏 is 𝜎𝜏 ), one step being to extend Kuhn’s equivalence results

between behavioral and mixed strategies [20] to the subgames.

Then, defining the optimal action-value function:

𝑄∗𝜏 (𝜎𝜏 , 𝜷𝜏 )
def

= 𝑟 (𝜎𝜏 , 𝜷𝜏 ) + 𝛾𝑉 ∗𝜏+1 (𝑇 (𝜎𝜏 , 𝜷𝜏 )), (6)

we can now prove that a Bellman optimality equation exists, which

justifies reasoning on subgames despite the non-observability.

Theorem 3.2 (Bellman optimality equation – Proof in [10](App.

C.1.2)). 𝑉 ∗𝜏 (𝜎𝜏 ) satisfies the following functional equation:
𝑉 ∗𝜏 (𝜎𝜏 ) = max

𝛽1𝜏

min

𝛽2𝜏

𝑟 (𝜎𝜏 , 𝜷𝜏 ) + 𝛾𝑉 ∗𝜏+1 (𝑇 (𝜎𝜏 , 𝜷𝜏 )) = max

𝛽1𝜏

min

𝛽2𝜏

𝑄∗𝜏 (𝜎𝜏 , 𝜷𝜏 ) .

The proof requires decomposing min and max operators over

different time steps before swapping them appropriately to end up

recognizing the optimal value function at the next time step (𝑉 ∗
𝜏+1).

Theorems 3.1 and 3.2 together show that Theorem 2.5 holds even

without player’s strategies being public, so that we can now build

on the convex-concave property to solve zs-oMGs.

3.2 Towards Solving zs-OMGs
This section aims at providing the second tool for DP and HS with

continuous state spaces, i.e., bounding approximators of optimal

value functions which will allow generalization across occupancy

space. Their update and selection operators are written as linear

programs, and they turn out to come with solution strategies.

3.2.1 Bounding value functions. So far, several issues prevented to

apply the HSVI scheme to zs-POSGs, starting with the continuous

spaces of 1. occupancy states (zs-OMG states) and 2. decision rules

(zs-OMG actions). One can address (1) by introducing the bounding

functions 𝑉 𝜏 (𝜎𝜏 ) and 𝑉 𝜏 (𝜎𝜏 ) of 𝑉 ∗𝜏 (𝜎𝜏 ) (cf. [10], App. D.2), for
instance:

𝑉 𝜏 (𝜎𝜏 ) = min

⟨�̃�𝑐,1
𝜏 ,⟨a2𝜏 ,𝛽2𝜏 : ⟩⟩∈J𝜏

[
𝜎
𝑚,1
𝜏 · a2𝜏 + _𝜏 ∥𝜎𝜏 − 𝜎

𝑚,1
𝜏 �̃�

𝑐,1
𝜏 ∥1

]
,

where a2𝜏 component-wise upper-bounds a2
[�̃�𝑐,1

𝜏 ,𝛽2𝜏 : ]
for some 𝛽2𝜏 :.

They allow generalizing knowledge from the subgame rooted at

𝜎𝜏 to any other one rooted at �̃�𝜏 . To do so, we use 𝑉
∗
’s Lipschitz-

Continuity proven below.

Theorem 3.3 (Lipschitz-Continuity of 𝑉 ∗ - Proof in [10](App.

D.1.3)). Let ℎ𝜏
def

=
1−𝛾𝐻−𝜏
1−𝛾 (or ℎ𝜏

def

= 𝐻 − 𝜏 if 𝛾 = 1). Then 𝑉 ∗𝜏 (𝜎𝜏 ) is
_𝜏 -Lipschitz continuous in 𝜎𝜏 at any depth 𝜏 ∈ {0 . . 𝐻 − 1}, where
_𝜏 = 1

2
ℎ𝜏 (𝑟max − 𝑟min).

Yet, this yields (generally non-convex) Lipschitz-continuous func-

tions whose max-min optimization would be intractable, so that

(2) remains an issue. Also, we do not know how to retrieve valid

solution strategies. In particular, and as illustrated in Example 1,

simply concatenating decision rules backwards from 𝜏 = 𝐻 − 1 to 0
would not guarantee globally-consistent solutions, and could result

in exploitable strategies.

But then, combining Theorems 2.5 and 3.2 leads to introducing

a novel value function (denoted𝑊
1,∗
𝜏 ) through writing, for any os

𝜎𝜏 :

𝑉 ∗𝜏 (𝜎𝜏 ) = max

𝛽1𝜏

min

𝛽2
𝜏 :𝐻−1∈B

2

𝜏

[
𝑟 (𝜎𝜏 , 𝜷𝜏 ) + 𝛾𝜎

𝑚,1
𝜏+1 · a

2

[𝜎𝑐,1
𝜏+1,𝛽

2

𝜏+1:𝐻−1 ]

]
︸                                                        ︷︷                                                        ︸

def

=𝑊
1,∗
𝜏 (𝜎𝜏 ,𝛽1𝜏 )

.

Assuming that player 2 can only respond with one of finitely

many stored strategies, the concavity and _𝜏 -Lipschitz-continuity

of𝑊
1,∗
𝜏 allow upper-bounding it with finitely many tuples 𝑤 =

⟨�̃�𝜏 , 𝛽2𝜏 , ⟨a2𝜏+1, 𝛽2𝜏+1:⟩⟩ stored in setsI𝜏 , andwherea
2

𝜏+1 upper-bounds
a2
[�̃�𝑐,1

𝜏+1,𝛽
2

𝜏+1: ]
.

Proposition 3.4 (Proof in [10](App. D.2.2)). Let I𝜏 be a set of tuples
𝑤 = ⟨�̃�𝜏 , 𝛽2𝜏 , ⟨a2𝜏+1, 𝛽2𝜏+1:⟩⟩. Then,

𝑊 𝜏 (𝜎𝜏 , 𝛽1𝜏 )
def

= min

⟨�̃�𝜏 ,𝛽2𝜏 ,⟨a2𝜏+1,𝛽2𝜏+1: ⟩⟩∈I𝜏

[
𝑟 (𝜎𝜏 , 𝛽1𝜏 , 𝛽2𝜏 ) + 𝛾𝑇 1

𝑚 (𝜎𝜏 , 𝛽1𝜏 , 𝛽2𝜏 ) · a2𝜏+1

+_𝜏+1∥𝑇 (𝜎𝜏 , 𝛽1𝜏 , 𝛽2𝜏 ) −𝑇 1

𝑚 (𝜎𝜏 , 𝛽1𝜏 , 𝛽2𝜏 )𝑇 1

𝑐 (�̃�
𝑐,1
𝜏 , 𝛽2𝜏 )∥1

]
(7)

upper-bounds𝑊
1,∗
𝜏 over the whole space O𝜎𝜏 × B1

𝜏 .

Symmetrically, we define𝑊 𝜏 as the lower bound of the symmet-

rically defined𝑊
2,∗
𝜏 . As explained in the next two sections,𝑊 𝜏 will

be easier to deal with compared to 𝑉 𝜏 , allowing 1 to seek for deci-

sion rules optimistically, and providing valid solution strategies for

2 for the subgame at 𝜏 , i.e., ignoring consistency with higher-level

subgames.

3.2.2 Action Selection and Backup Operators. We now detail the

decision rule selection for 1 using𝑊 𝜏 to optimistically guide a

trajectory in occupancy space, and how to update𝑊 𝜏 by providing

backup operations.

To that end, first note that linearities in 𝛽1𝜏 within Eq. (7) allow

writing𝑊 𝜏 (𝜎𝜏 , 𝛽1𝜏 ) = min
𝑤∈I𝜏 𝛽

1

𝜏
⊤ ·𝑀𝜎𝜏

( ·,𝑤 ) , where 𝛽
1

𝜏 and𝑀
𝜎𝜏
( ·,𝑤 )

(for each𝑤 ) are column vectors of dimension |Θ1 × A1 |.𝑀𝜎𝜏
(see

developed formula in [10], App. D.3.1) is thus a |Θ1

𝜏 × A1 | × |I𝜏 |
matrix. Then,𝑊 𝜏 being a lower envelope of hyperplanes leads to a

convenient way of computing max𝛽1𝜏
𝑊 𝜏 (𝜎𝜏 , 𝛽1𝜏 ).

Proposition 3.5 (Proof in [10](App. D.3.1)). For any given 𝜎𝜏 and

any set I𝜏 of tuples𝑤 = ⟨�̃�𝜏 , 𝛽2𝜏 , ⟨a2𝜏+1, 𝛽2𝜏+1:⟩⟩,max𝛽1𝜏
𝑊 𝜏 (𝜎𝜏 , 𝛽1𝜏 ) is

equivalent to the LP and dual LP:

lp𝑊 𝜏 (𝜎𝜏 ) : max

𝛽1𝜏 ,𝑣
𝑣 s.t. (i) ∀𝑤 ∈ I𝜏 , 𝑣 ≤ 𝛽1𝜏

⊤ ·𝑀𝜎𝜏
( ·,𝑤 )

and (ii) ∀\1𝜏 ∈ Θ1

𝜏 ,
∑︁
𝑎1

𝛽1𝜏 (𝑎1 |\1𝜏 ) = 1,

dlp𝑊 𝜏 (𝜎𝜏 ) : min

𝜓 2

𝜏 ,𝑣
𝑣 s.t. (i) ∀(\1𝜏 , 𝑎1), 𝑣 ≥ 𝑀

𝜎𝜏

( (\ 1

𝜏 ,𝑎
1 ),· ) ·𝜓

2

𝜏

and (ii)

∑︁
𝑤∈I𝜏

𝜓2

𝜏 (𝑤) = 1.

(8)

Remark 3.6 (Outcomes of this game). Since𝑊 𝜏 upper-bounds𝑊
1,∗
𝜏 ,

solving this LP provides 1with an optimistically selected immediate
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decision rule 𝛽1𝜏 . For 2,𝜓
2

𝜏 is a probability distribution over tuples

containing strategies 𝛽2𝜏 ⊕ 𝛽2
𝜏+1:𝐻−1, thus recursively induces a

strategy, which can be turned into a behavioral strategy 𝛽2
𝜏 :𝐻−1

(more details in [10], App. D.3.3) whose value is at worst (from 2’s

viewpoint) the LP’s value, i.e., against 1’s best response to it.

Then, the following properties allow performing backups, i.e.,

filling up the set I𝜏−1 with new tuples𝑤 containing, in particular,

vectors a2𝜏 .

Lemma 1 (Proof in [10](App. D.3.2)). For any 𝜓2

𝜏 = dlp𝑊 𝜏 (𝜎𝜏 ),
the vector a2

[𝜎𝑐,1
𝜏 ,𝜓 2

𝜏 ]
is component-wise upper-bounded by

a2𝜏
def

=
1

𝜎
𝑚,1
𝜏

𝑀
𝜎𝜏

( (\ 1

𝜏 ,𝑎
1 ),· ) ·𝜓

2

𝜏 .

Proposition 3.7 (update). Let us assume that

• a transition 𝜎𝜏−1 → 𝜎𝜏 has been performed through playing

⟨𝛽1
𝜏−1, 𝛽

2

𝜏−1⟩, and
• solving dlp𝑊 𝜏 (𝜎𝜏 ) provides both
– a tree strategy𝜓2

𝜏 (as the main solution of the DLP), and

– a vector a2𝜏 = 1

𝜎
𝑚,1
𝜏

𝑀
𝜎𝜏

( (\ 1

𝜏 ,𝑎
1 ),· ) ·𝜓

2

𝜏 (as a by-product).

Then,

(1) I𝜏−1 ← I𝜏−1 ∪ {⟨𝜎𝑐,1𝜏−1, 𝛽
2

𝜏−1, ⟨a
2

𝜏 ,𝜓
2

𝜏 ⟩⟩} is a valid update

operator in the sense that it preserves𝑊 𝜏 ’s upper-bounding

property, and

(2) similarly, J𝜏 ← J𝜏 ∪ {⟨𝜎𝑐,1𝜏 , ⟨a2𝜏 ,𝜓2

𝜏 ⟩⟩} is a valid update

operator for 𝑉 𝜏 .

3.2.3 Initialization. To initialize the bounds𝑊 𝜏 and 𝑉 𝜏 for any

time step, we begin by generating a trajectory in a forward phase.

At each time step, a uniform decision rule is picked for both players

to derive a sequence of occupancy states 𝜎0, . . . , 𝜎𝐻−1. Then, during
a backward phase, for each time step 𝜏 = 𝐻 − 1, . . . , 1, we create a
tuple𝑤𝜏−1,𝑖𝑛𝑖𝑡 = ⟨𝜎𝑐,1𝜏−1, 𝛽

2

𝜏−1, ⟨a
2

𝜏 ,𝜓
2

𝜏 ⟩⟩, where

• 𝜎
𝑐,1
𝜏−1 is the conditional term associated to 𝜎𝜏−1;

• 𝛽2
𝜏−1 is a uniform decision rule;

• 𝜓2

𝜏 is

– a degenerate distribution over the only next tuple 𝑤𝜏+1
if 𝜏 < 𝐻 − 1 (which induces a concatenation of uniform

decision rules for all future time steps);

– undefined if 𝜏 = 𝐻 − 1;
and

• a2𝜏 (\1𝜏 ) = 𝑟𝑚𝑎𝑥 · (𝐻 −𝜏) for any history \1𝜏 that player 1 could

face.

Tuples 𝑤𝜏−1,𝑖𝑛𝑖𝑡 are added to sets I𝜏−1. For any time step 𝜏 ≥ 0,

we similarly create tuples ⟨𝜎𝑐,1𝜏 , ⟨a2𝜏 ,𝜓2

𝜏 :⟩⟩ and add them to sets J𝜏 .

The lower bounds are initialized symmetrically.

We now show that occupancy states can also be prescriptive,

allowing one to retrieve an 𝜖-NES for the subgame at occupancy

state 𝜎𝜏 once the bounds are within 𝜖 from each other, in particular

at 𝜏 = 0.

3.2.4 Extracting a NES. Vectors a2
0
upper bounding the value of

their associated strategies, the following result tells when and how

to extract an 𝜖-optimal solution strategy for this player.

Theorem 3.8. If sets J 0 and J
0

are such that 𝑉 0 (𝜎0) −𝑉 0
(𝜎0) ≤

𝜖, then argmax𝑤∈J
0

a2
0
and argmin

𝑤∈J
0

a2
0
respectively provide

strategies𝜓1

0
and𝜓2

0
that form an 𝜖-NES of the zs-POSG.

Proof. First, let us notice that, at 𝜏 = 0, the occupancy-state

space is reduced to a singleton, {𝜎0 = ⟨1⟩}, because of the single
(empty) joint aoh. The value vectors a are thus one-dimensional,

and here considered as scalar numbers.

Let us assume that sets J 0 and J
0

are such that

𝑉 0 (𝜎0) −𝑉 0
(𝜎0) ≤ 𝜖,

and let 𝑤∗ = ⟨𝜎𝑐,1
0

, ⟨a∗
0
,𝜓

1,∗
0
⟩⟩ and 𝑤∗ = ⟨𝜎𝑐,1

0
⟨a∗

0
,𝜓

2,∗
0
⟩⟩ be the tu-

ples returned by argmax𝑤∈J
0

a2
0
and argmin

𝑤∈J
0

a1
0
. Then, not-

ing that 𝜎0 = ⟨1⟩,

a1[𝜎𝑐,2
0

,𝜓
1,∗
0
] − a

2

[𝜎𝑐,1
0

,𝜓
2,∗
0
] ≤ a∗

0
− a∗

0

= max

𝑤∈J
0

a2
0
− min

𝑤∈J
0

a1
0

= 𝑉 0 (𝜎0) −𝑉 0
(𝜎0)

≤ 𝜖.

Thus, 𝜓1

0
and 𝜓2

0
are two strategies whose security levels (values

against best-responding opponents) are 𝜖-close, and thus form an

𝜖-NES of the zs-POSG. □

Note: This result can be generalized to any 𝜎𝜏 at later time steps,

but this generalization is not used in practice.

Distributions𝜓2

0
are stored and could be executed as is. [10] (App.

D.3.3) still presents a conversion process to retrieve a behavioral

strategy 𝛽2
0:𝐻−1 from a distribution𝜓2

0
over tuples𝑤 ∈ I0. Next, we

see how to design a practical HSVI-based algorithm that provably

returns sets J 0 and J
0

satisfying Theorem 3.8 after finitely many

iterations.

3.3 HSVI for zs-POSGs
This section details our adaptation of the general HSVI scheme for

𝜖-optimally solving zs-POSGs, and presents a theoretical finite-time

convergence property.

3.3.1 Algorithm. HSVI for zs-POSGs is described in Algorithm 1.

As vanilla HSVI, it relies on (i) generating trajectories while acting

optimistically (lines 10+11), i.e., player 1 (resp. 2) acting “greedily”

w.r.t.𝑊 𝜏 (resp.𝑊 𝜏 ), and (ii) locally updating the upper and lower

bounds (lines 17+18). Both phases rely on solving the same games

described by LP (8). At 𝜏 = 𝐻 − 1, line 14 selects drs by solving an

exact game, and line 20 returns a distribution reduced to the single

element just added in line 15.

A key difference with Smith and Simmons’s HSVI algorithm [27]

lies in the criterion for stopping trajectories. The branching factor

for zs-oMGs being infinite, wemake use of𝑉 ∗’s Lipschitz-continuity
to implement the same adaptations as [15] used for zs-OS-POSGs.

The Lipschitz-continuity allows controlling the variations of the

value function within small balls of radius 𝜌 around a previously

visited occupancy-state. A finite number of such balls is sufficient

to cover the whole space. Then, Theorem 3.9 (below) ensures 𝜖-

optimality in finite time if stopping trajectories when 𝑉 𝜏 (𝜎𝜏 ) −
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𝑉 𝜏 (𝜎𝜏 ) ≤ 𝑡ℎ𝑟 (𝜏), with the threshold function 𝑡ℎ𝑟 (𝜏) def

= 𝛾−𝜏𝜖 −∑𝜏
𝑖=1 2𝜌_𝜏−𝑖𝛾

−𝑖
.

Algorithm 1: zs-oMG-HSVI(𝑏0, [𝜖, 𝜌])
[here returning a tuple 𝑤0 containing a solution strategy 𝜓 1

0

for

player 1]

1 Fct zs-oMG-HSVI(𝑏0 ≃ 𝜎0)
2 foreach 𝜏 ∈ 0 . . 𝐻 − 1 do
3 Initialize 𝑉 𝜏 , 𝑉 𝜏 ,𝑊 𝜏 , &𝑊 𝜏

4 while
[
𝑉 0 (𝜎0) −𝑉 0

(𝜎0) > 𝑡ℎ𝑟 (0)
]
do

5 Explore(𝜎0, 0,−,−)
6 return argmax𝑤0∈J

0

a1
0

7 Fct Explore(𝜎𝜏 , 𝜏, 𝜎𝜏−1, 𝜷𝜏−1)
8 if

[
𝑉 𝜏 (𝜎𝜏 ) −𝑉 𝜏 (𝜎𝜏 ) > 𝑡ℎ𝑟 (𝜏)

]
then

9 if 𝜏 < 𝐻 − 1 then
10 𝛽

1

𝜏 ← lp𝑊 𝜏 (𝜎)
11 𝛽2

𝜏
← lp𝑊 𝜏 (𝜎)

12 Explore(𝑇 (𝜎𝜏 , 𝛽
1

𝜏 , 𝛽
2

𝜏
), 𝜏 + 1, 𝜎𝜏 , ⟨𝛽

1

𝜏 , 𝛽
2

𝜏
⟩)

13 else (𝜏 = 𝐻 − 1)
14 (𝛽1𝜏 , 𝛽2𝜏 ) ← 𝑁𝐸𝑆

(
𝑟 (𝜎, 𝛽1𝜏 , 𝛽2𝜏 )

)
15 I1𝜏 ← I

1

𝜏 ∪ {⟨𝜎
𝑐,1
𝜏 , 𝛽2

𝜏
,−⟩}

16 I2𝜏 ← I
2

𝜏 ∪ {⟨𝜎
𝑐,2
𝜏 , 𝛽

1

𝜏 ,−⟩}
17 Update(𝑊 𝜏−1, ⟨𝜎𝜏 , 𝜎𝑐,1𝜏−1, 𝛽

2

𝜏−1⟩)

18 Update(𝑊 𝜏−1, ⟨𝜎𝜏 , 𝜎
𝑐,2
𝜏−1, 𝛽

1

𝜏−1⟩)

19 Fct Update(𝑊 𝜏−1, ⟨𝜎𝜏 , 𝜎𝑐,1𝜏−1, 𝛽
2

𝜏−1⟩)
20 ⟨a2𝜏 ,𝜓2

𝜏 ⟩ ← dlp𝑊 𝜏 (𝜎𝜏 , )
21 I𝜏−1 ← I𝜏−1 ∪ {⟨𝜎𝑐,1𝜏−1, 𝛽

2

𝜏−1, ⟨a
2

𝜏 ,𝜓
2

𝜏 ⟩⟩}
22 J𝜏 ← J𝜏 ∪ {⟨𝜎𝑐,1𝜏 , ⟨a2𝜏 ,𝜓2

𝜏 ⟩⟩}

Setting 𝜌 . As can be observed, this threshold function should

always return positive values, which requires a small enough (but

> 0) 𝜌 . For a given problem (cf. [10], Proposition E.1, App. E.1), the

maximum possible value 𝜌max depends on the Lipschitz constants

at each time step, which themselves depend on the initial upper and

lower bounds of the optimal value function. Setting 𝜌 ∈ (0, 𝜌max)
means making a trade-off between generating many trajectories

(small 𝜌) and long ones (large 𝜌).

3.3.2 Finite-Time Convergence.

Theorem 3.9 (Proof in [10](App. E.2.1)). zs-oMG-HSVI (Alg. 1)

terminates in finite time with an 𝜖-approximation of 𝑉 ∗
0
(𝜎0) that

statisfies Theorem 3.8.

The finite time complexity suffers from the same combinatorial

explosion as for Dec-POMDPs, and is even worse as we have to han-

dle “infinitely branching” trees of possible futures. More precisely,

the bound on the number of iterations depends on the number of

balls of radius 𝜌 required to cover occupancy simplexes at each

depth.

Also, the following proposition allows solving infinite horizon

problems as well (when 𝛾 < 1) by bounding the length of HSVI’s

trajectories using the boundedness of 𝑉 −𝑉 and the exponential

growth of 𝑡ℎ𝑟 (𝜏).

Proposition 3.10 (Proof in [10](App. E.2.2)). When 𝛾 < 1, the

length of trajectories is upper bounded by 𝑇max

def

=

⌈
log𝛾

𝜖− 2𝜌_∞
1−𝛾

𝑊 − 2𝜌_∞
1−𝛾

⌉
,

where _∞ is a depth-independent Lipschitz constant and𝑊
def

= ∥𝑉 (0)−
𝑉 (0) ∥∞ is the maximum width between initializations.

4 EXPERIMENTS
Experiments presented in this section aim at validating the pro-

posed approach and comparing its behavior to the behavior of some

reference algorithms.

4.1 Setup
Benchmark Problems. Five benchmark problems were used. Adver-

sarial Tiger and Competitive Tiger were introduced byWiggers [32].

Mabc and Recycling Robot are well-known Dec-POMDP bench-

mark problems (cf. http://masplan.org) and were adapted to our

competitive setting by making player 2minimize (rather than maxi-

mize) the objective function. The fifth benchmark is the adaptation

of the well-known Matching Pennies game detailed in Example 1,

with a small difference in that 𝑟 (𝑠ℎ, ·, 𝑎ℎ) = +2 instead of +1; this
change breaks the symmetry in the optimal strategy, so that HSVI

can not find the NES by "chance" by trying uniform strategies. We

only consider finite horizons 𝐻 and 𝛾 = 1.

Algorithms. For conciseness, Algorithm 1 is here denoted HSVI, and

compared against Random search and Informed search [32] (both

using Wiggers’s implementation (unlicensed and unreleased)), SFLP [16],

and CFR+ [29] (both using open_spiel [21] (Apache license)).

All algorithms (but SFLP, which is exact) used a target error

𝜖 = 1% of the initial gap 𝐻 · (𝑟max − 𝑟min). HSVI ran with _𝜏 = (𝐻 −
𝜏) · (𝑟max−𝑟min), and 𝜌 themiddle of its feasible interval.We also use

FB-HSVI’s LPE lossless compression of probabilistically equivalent

action-observation histories in occupancy states, so as to reduce

their dimensionality [11]. Experiments ran on an Ubuntu machine

with i7-10810U 1.10GHz Intel processor and 16GB available RAM,

and the code is available under MIT license at https://gitlab.com/

aureliendelage1/hsviforzsposgs.

Random and Informed, only ran once, providing fairly represen-

tative results.

4.2 Results
Performance Measures. A common performance measure in 2-

player zero-sum games is the exploitability of a strategy 𝛽𝑖
0:
, i.e., the

difference between the strategy’s security level (the value of ¬𝑖’s
best response to 𝛽𝑖

0:
) and the Nash equilibrium value 𝑉 ∗

0
(𝜎0):

exploitability(𝛽𝑖
0:
) = |𝑉 ∗ (𝜎0) − 𝜎𝑚,1

0
· a𝑖[𝜎𝑐,¬𝑖

0
,𝛽𝑖

0:
] |

= |𝑉 ∗ (𝜎0) − a𝑖[𝜎𝑐,¬𝑖
0

,𝛽𝑖
0:
] |,

http://masplan.org
https://gitlab.com/aureliendelage1/hsviforzsposgs
https://gitlab.com/aureliendelage1/hsviforzsposgs
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noting that 𝜎0 is a degenerate distribution over a single element,

the pair of empty action-observation histories. In our setting, it will

be convenient to look at the (average) exploitability of a strategy

profile ⟨𝛽1
0:
, 𝛽2

0:
⟩:

exploitability(𝛽1
0:
, 𝛽2

0:
) =
(𝑉 ∗ (𝜎0) − a1[𝜎𝑐,2

0
,𝛽1

0:
]
) + (a2

[𝜎𝑐,1
0

,𝛽2
0:
]
−𝑉 ∗ (𝜎0))

2

=

a2
[𝜎𝑐,1

0
,𝛽2

0:
]
− a1
[𝜎𝑐,2

0
,𝛽1

0:
]

2

.

This quantity is a more concise statistic than both individual ex-

ploitabilities, and can be obtained by solving two POMDPs (fixing

one player’s strategy or the other) without requiring to know the

actual NEV.

This exploitability can also be defined as half of the gap between

security levels (SL-gap). To analyze the convergence of algorithms

with respect to the initial gap, we will look at the SL-gap percentage,

i.e.,

SL-gap percentage(𝛽1
0:
, 𝛽2

0:
) =

a2
[𝜎𝑐,1

0
,𝛽2

0:
]
− a1
[𝜎𝑐,2

0
,𝛽1

0:
]

𝐻 · (𝑅max − 𝑅min)

=
2 · exploitability(𝛽1

0:
, 𝛽2

0:
)

𝐻 · (𝑅max − 𝑅min)
.

4.2.1 Comparison with the state of the art. Table 1 gives the con-
vergence time of Wiggers’s two heuristic algorithms, CFR+, SFLP,

and HSVI on the benchmark problems with various horizons, or

the SL-gap percentage when reaching a 1 h time limit. Executions

not returning any result (i.e., for Random, Informed and CFR+, not

performing a single iteration) are noted out-of-time [oot].

This table first shows that HSVI always outperforms the heuris-

tic baseline provided by Wiggers’s algorithms, thus proving the

interest of an HSVI scheme. However, HSVI is outperformed by

both SFLP and CFR+, unless they run out of time. As can be noted,

HSVI is able to keep improving even when the horizon grows

thanks to the LPE compression, taking advantage of underlying

structure in some games (e.g., Recycling Robot, a problem with

transition+observation independence (TOI), when scaling to larger

horizons).

Additional bound and exploitability graphs can be found in [10].

5 DISCUSSION
This paper addresses the problem of 𝜖-optimally solving zs-POSGs.

In contrast to SFLP or CFR+, we provide the necessary founda-

tional building blocks to apply dynamic programming (in tandem

with heuristic search) to solve zs-POSGs. We introduce Bellman

optimality equations and uniform-continuity properties of the op-

timal value function. Next, we exhibit rules for updating value

functions while preserving uniform continuity and the ability to

extract globally-consistent solutions. Finally, we describe the first

effective DP algorithm for zs-POSGs, zs-oMG-HSVI, with finite-

time convergence to an 𝜖-optimal solution. Experiments support

our theoretical findings.

We believe our approach complements existing ones, e.g., SFLP

and CFR+, in two dimensions. First, it breaks the original zs-POSG

into subgames. Second, it generalizes values from visited subgames

Table 1: Comparison of different solvers on various bench-
mark problems. Reported values are the running times until
the algorithm’s error gap (based on bounds for HSVI) is lower
than 1%, or, if the timeout limit is reached, the security-level
gap percentages (100% if gap = 𝐻 · (𝑅max − 𝑅min)). Notes: (1)
Horizons with a star exponent (𝐻∗) are those for which the
security-level computations ran out of time so that, for HSVI,
we give the gap between the pessimistic bounds. (2) Even
though Random and Informed contain randomness, we ran
them only once, getting fairly representative results.

Domain H Wiggers HSVI SFLP CFR+

Rand. Inf.

Comp

Tiger

2 2.6% 8.3% 6 s 1 s 18 s

3 7.0% 6.1% 3.8% 48 s 30 m

4 12.1% 7.7% 4.8% 14 m [oot]

5
∗

[oot] [oot] 53.3% [oot] [oot]

Rec.

Robot

2 3.4% 5.1% 5 s 1 s 30 s

3 9.2% 15.2% 4 m 1 s 13 m

4 14.1% 19.6% 4.9% 13 s 1.5%

5 [oot] [oot] 10.7% [oot] [oot]

6
∗

[oot] [oot] 45.5% [oot] [oot]

Adv

Tiger

2 1 s 3.7% 1 s 1 s 1 s

3 1.5% 4.4% 2 m 1 s 8 s

4 2.9% 5.6% 2.6% 8 s 13 m

MABC

2 45 s 18.8% 8 s 3 s 5 s

3 4.2% 9.2% 27 s 1 s 1 m

4 18.1% 36.3% 4.4% 3 s 47 m

MP

4 2 m 46.7% 5 s 1 s 2 s

5 9 m 45.8% 1 m 1 s 10 s

6 2.2% 44.6% 8 m 2 s 1 m

to unvisited ones. Our performances are as good as or better than

those from SFLP and CFR+ for small-dimensional subgames (e.g.,

with TOI structure). Unfortunately, the advantage of breaking the

original problem into subgames and exploiting uniform continuity

properties often fails to fully manifest in the overall computational

time.

We hope that this approach will lay the foundation for further

work in the area of both exact and approximate DP solutions for

zs-POSGs. In the short term, we shall investigate pruning tech-

niques, better Lipschitz constants, and improved initial bounding

approximators using solutions from relaxations of zs-POSGs, e.g.,

zs-OS-POSGs. In the long term, we shall investigate (deep) RL for zs-

POSGs, similarly to a recent approach for Dec-POMDPs [3]. The lat-

ter shall investigate the trade-off between the update-rule accuracy

and the computational efficiency when facing high-dimensional

subgames, hence providing competitive solvers. [10] also provides

a discussion regarding the connexion between this work and those

based on continual re-solving.
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