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ABSTRACT
We propose a Bayesian learning methodology for addressing the
problem of communication for the literal listener, a POMDP agent
at the bottom of the cognitive hierarchy in the Communicative In-
teractive Partially Observable Markov Decision Process (CIPOMDP)
framework. The agent models and learns the uncertainty inmessage
distribution by recording the counts of messages received at each
state during interaction with the environment and the unknown
sender. We first propose parameterization of message distribution
and then the update procedure which is integrated alongside the
usual POMDP belief update. We provide an approximate update
procedure based on particle filtering and show the results on bench-
mark multi-agent POMDP domains.
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1 INTRODUCTION
The Communicative IPOMDP (CIPOMDP) framework [7] is a princi-
pled approach to modeling interaction and communication between
agents in a multi-agent setting. It extends the Interactive POMDP
(IPOMDP) framework [6], by allowing agents to exchange messages
with each other. Communication is treated as a type of action in
CIPOMDPs, and decisions about communication are made using
decision-theoretic planning and the Bellman optimality principle.
In CIPOMDPs, agents update their beliefs based on their actions,
observations, and messages they receive from and send to other
agents using Bayes’ theorem. This approach allows for the con-
sideration of agents who are not necessarily cooperative during
communication and are only guided by their own self-interest.

In the CIPOMDP framework, the interactive state space (IS) in-
cludes nested models of the beliefs of different agents. When an
agent updates their beliefs based on the Bayesian update, this up-
date process is applied to all levels of the agent’s nested theories of
mind. These simulations are a feature of game-theoretic pragmat-
ics, which is a way of formalizing how agents communicate and
make decisions in multi-agent settings. The recursive process of
updating beliefs terminates at the level of "flat" POMDP models,
which represent agents who do not have explicit models of other
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agents. In the CIPOMDP framework, it is assumed that an agent
who does not have an explicit model of any other agents can still
participate in the exchange of messages. This agent, referred to as
a "literal listener," can incorporate the content of a message into its
beliefs about the physical state without considering the beliefs or
intentions of the sender when interpreting the message. It rather
takes the message at face value and updates its beliefs accordingly.

Thus, one of the challenges in the CIPOMDP literature is in-
tegrating incoming messages into the belief update process. In
the CIPOMDP framework, level-0 POMDP agents do not have the
ability to make use of incoming messages, which can limit the
usefulness of the CIPOMDP framework. Without the ability to in-
corporate incoming messages, level-1 CIPOMDP agents may not
have the incentive to send particular messages, which would elimi-
nate the purpose of communication and consequently the overall
benefits of the CIPOMDP framework. It is important to find ways
to effectively incorporate incoming messages into the belief up-
date process in order to fully realize the potential of the CIPOMDP
framework for modeling the communication between agents.

Among previous works, [1] deals with the problem by assum-
ing a fixed discretized message distribution under the gullibility
assumption and demonstrates the scenarios in cooperative and de-
ceptive cases. [9] offers workaround to the problem by defining a
function which maps a message received from higher level agent
to its action, replacing the fixed distribution ascribed by the level-0
agent to sender’s actions.

We proceed to define the principled approach to learning mes-
sage distribution by keeping track of the counts of each message
in each state. This frequency-based model is a part of the POMDP
state space and hence can be updated using the Bayesian approach.
We first formalize the notion of "literal POMDP", derive the belief
update and provide a modified particle filtering algorithm for ap-
proximating the posterior. We finally report the performance of the
algorithm in recovering the true message-generating distribution.

We define the listener to be literal in the sense that the listener’s
interpretation of the received message does not take the intention
of the sender into account, owing to the lack of an opponent model.
Rather the listener learns the crude model of the frequency of mes-
sages in each state. This is in contrast to a strategic listener, which
infers the most likely epistemic state that would have triggered
the speaker to say what he actually said and not something else
[4]. In the context of the theory of mind agent (Figure 1), as we
ascend the cognitive hierarchy, the agents with strategy level l>0,
can attribute strategic interpretation to the received message due to
the sophistication of opponent modeling [7]. The strategic listeners
are also explored in pragmatic reasoning literature like [3] which
shows that the listeners use Bayesian inference to recover speakers’
intended referents in a referential communication game.



Figure 1: The cognitive hierarchy for the level-2 CIPOMDP
agent. For levels 𝑙 ą 0 the agent can model the intentional
choice of message from the sender. The recursion terminates
at level 𝑙 “ 0, where the literal agent assumes the message
is being generated from fixed distribution from the environ-
ment

2 BACKGROUND
2.1 Partially Observable Markov Decision

Processes (POMDPs)
POMDPs provide the principled decision-making framework for
modeling the agent acting in partially observable and non-deterministic
environment. POMDP can be defined as a tuple

x𝑆,𝐴,𝑇 , 𝑅,Ω,𝑂y

where,
‚ S is a state space
‚ A(s) Ď A is a set of actions applicable to set of states s P S
‚ T is a transition function 𝑇 : 𝑆 ˆ 𝐴 ˆ 𝑆 1 Ñ Δp𝑆q gives
probability of transitioning to state 𝑠1 given state 𝑠 and action
a 𝑃p𝑠1 | 𝑠, 𝑎q

‚ R is a reward function 𝑅 : 𝑆 ˆ 𝐴 Ñ R
‚ Ω is a set of observations

‚ O is an observation function 𝑂 : 𝑆 ˆ 𝐴 ˆ 𝑆 1 Ñ ΔpΩq gives
probability of receiving observation 𝜔 while transitioning
to state s’ after taking action a 𝑃p𝜔 | 𝑠, 𝑎, 𝑠1q

In sequential decision-making, the agent alternates between
taking action and receiving observation. Since the POMDP agent
cannot observe the state directly, it maintains belief over the pos-
sible physical states of the world, which summarizes the action-
observation history.

In general, POMDPs do not take part in the exchange of mes-
sages and cannot keep track of the presence of other agents in the
environment. We propose the literal-POMDP which can keep track
of the received messages from the unknown sender and hence learn
the message distribution.

2.2 Communicative Interactive POMDPs
CIPOMDP [7] [5] is the bayesian decision-theoretic framework
for a self-interested agent to communicate and interact with other
agents in the partially observable and stochastic environment. A
finitely nested communicative interactive POMDP of agent 𝑖 in an
environment with agent 𝑗 , is defined as:

𝐶𝐼𝑃𝑂𝑀𝐷𝑃𝑖 “ x𝐼𝑆𝑖,𝑙 , 𝐴𝑖 ,M,Ω𝑖 ,𝑇𝑖 ,𝑂𝑖 , 𝑅𝑖y (1)

where 𝐼𝑆𝑖,𝑙 is a set of interactive states, defined as 𝐼𝑆𝑖,𝑙 “ 𝑆 ˆ

𝑀𝑗,𝑘 , 𝑙 ě 1, where 𝑆 is the set of physical states and𝑀𝑗,𝑘 is the set
of possible models of agent 𝑗 , 𝑙 is the strategy (nesting) level, and
𝑘 ă 𝑙 .

2.3 Dirichlet Distribution
The Dirichlet distribution is a multivariate distribution over the
simplex, a set of non-negative values that sum to 1. It is commonly
used as a prior distribution in Bayesian analysis, particularly in the
context of categorical data.

The probability density function (PDF) of the Dirichlet distribu-
tion with parameters 𝜶 “ p𝛼1, 𝛼2, . . . , 𝛼𝑘q is given by:

𝑓 p𝒙 ;𝜶 q “
Γp

ř𝑘
𝑖“1 𝛼𝑖q

ś𝑘
𝑖“1 Γp𝛼𝑖q

𝑘
ź

𝑖“1
𝑥
𝛼𝑖´1
𝑖

where 𝒙 “ p𝑥1, 𝑥2, . . . , 𝑥𝑘q is a k-dimensional vector of values
on the simplex, and Γp¨q is the gamma function.

The mean of the Dirichlet distribution is
𝝁 “ p

𝛼1
ř𝑘

𝑖“1 𝛼𝑖
,

𝛼2
ř𝑘

𝑖“1 𝛼𝑖
, . . . ,

𝛼𝑘
ř𝑘

𝑖“1 𝛼𝑖
q

The Dirichlet distribution is a conjugate prior of the categorical
distribution, meaning that the posterior distribution is also a Dirich-
let distribution. This makes it a convenient choice for the Bayesian
analysis of categorical data like discretized message distribution.
We show in the next section how the Dirichlet distribution can be
used to model uncertainty over the message distribution. We draw
inspiration from the works like [11] and [2] where Dirichlet is used
to model uncertainty over the parameters of the POMDP.



3 APPROACH
3.1 Parameterization - Message distribution as a

categorical distribution
IN CIPOMDP, the messages are probability distributions. We pro-
ceed by discretizing the probability ascribed to a state into finite
bins. Let’s say message space is discretized into 3 regions and aug-
mented with nil, resulting in 4 messages |𝑀| “ 4. For notational
convenience, let’s suppose messages are represented as indices 1, 2,
3, and 4.

Table 1: Parameterization of Message Distribution

message
1 2 3 4

state + 𝜙`1 𝜙`2 𝜙`3 𝜙`4 𝜙`
𝜙- 𝜙´1 𝜙´2 𝜙´3 𝜙´4 𝜙´

Table 1 shows the state-message matrix Φ parameterizing mes-
sage distribution. For each state, we need a set of parameters 𝜙
, which encodes how likely a message is in particular state. For
2-state problem, let 𝜙` and 𝜙´ denote the parameter set for states
’+’ and ’-’ respectively.

Then, the likelihood of receiving a particular message given a
state s and parameter matrix 𝜙 is defined as

𝑃𝑟p𝑚𝑠𝑔 “1 11|𝑠 “1 `1, 𝜙q “ 𝜙`1

For each 𝑠 P 𝑆 ,

𝑚𝑠𝑔|𝜙𝑠 “ p𝑚𝑠𝑔1,𝑚𝑠𝑔2, .....𝑚𝑠𝑔𝑁 q „ 𝐶𝑎𝑡p|𝑀|, 𝜙𝑠q

ÿ

𝜙P𝜙`

𝜙 “
ÿ

𝜙P𝜙´

𝜙 “ 1

@𝜙 P Φ, 0 ď 𝜙 ď 1

3.2 Example Update - finite set of values for 𝜙
For illustration, let’s consider the simple scenario with two states,
two observations, and two messages each taking a value in a set
t‘`1, ‘´1u. Message generation is such that 𝑃𝑟p𝑚𝑠𝑔 “ ‘ `1 |𝑠 “

‘`1q “ 𝑃𝑟p𝑚𝑠𝑔 “ ‘ ´1 |𝑠 “ ‘´1q “ 𝜙

, and observation function is such that 𝑃𝑟p𝑜𝑏𝑠 “ ‘ `1 |𝑠 “ ‘`1q “

𝑃𝑟p𝑜𝑏𝑠 “ ‘ ´1 |𝑠 “ ‘´1q “ 0.85

Let Φ “ t0, 0.5, 1u for both the states. In general, set Φ can be dif-
ferent for different states. The agent starts with uniform distribution
over both state space S and parameter space Φ . 𝑃𝑟p𝑠q “ p0.5, 0.5q

and 𝑃𝑟p𝜙|𝑠q “ p0.33, 0.33, 0.33q.
The belief update proceeds as follows

𝑃𝑟p𝑠 “ ‘`1, 𝜙 “ 1|𝑜𝑏𝑠 “ ‘`1,𝑚𝑠𝑔 “ ‘`1, 𝑏q

9𝑃𝑟p𝑜𝑏𝑠 “ ‘ `1 |𝑠 “ ‘`1q𝑃𝑟p𝑚𝑠𝑔 “ ‘ `1 |𝑠 “ ‘`1, 𝜙 “ 1q

𝑃𝑟p𝑠 “ ‘`1, 𝜙 “ 1q

90.85 ˚ 1 ˚ 0.33 ˚ 0.5

Table 2: Belief update over 𝑠 and 𝜙

s 𝜙 Calculation posterior
+ 0 0.85 * 0 * 0.33 * 0.5 0
+ 0.5 0.85 * 0.5 * 0.33 * 0.5 0.283
+ 1 0.85 * 1 * 0.33 * 0.5 0.566
- 0 0.15 * 1 * 0.33 * 0.5 0.1
- 0.5 0.15 * 0.5 * 0.33 * 0.5 0.05
- 1 0.15 * 0 * 0.33 * 0.5 0

Table 2 shows posterior over 𝑠 and 𝜙 after receiving observation
‘`1 and message ‘`1. Posterior marginal over physical states is
(0.85, 0.15) and over Φ is (0.1, 0.33, 0.567). i.e. higher probability
to ascribed to 𝜙 “ 1, as the message and observation agreed with
each other.

3.3 Updating Distribution over continuous 𝜙𝑠
In this section, we relax the assumption that 𝜙 can take a finite set
of values. Particularly, if the distribution over 𝜙𝑠 is represented by
a Dirichlet distribution, then it serves as a conjugate prior to the
message distribution parameterized as in the section 3.1. We need a
separate Dirichlet for modeling message distribution in each state.
Let’s consider state ’+’,

The concentration hyperparameter for Dirichlet distribution is de-
noted as

𝛼` “ p𝛼`,1, 𝛼`,2, 𝛼`,3, 𝛼`,4q

The distribution over 𝜙` given the concentration hyperparame-
ters is denoted as

𝜙`|𝛼` “ p𝜙`1, 𝜙`2, 𝜙`3, 𝜙`4q „ 𝐷𝑖𝑟p|𝑀|, 𝛼q

𝑐 “ p𝑐1, 𝑐2, 𝑐3 ....𝑐|𝑀|q is a vector recording the number of occur-
rences of message𝑚𝑖 in a stream of messages denoted by𝑚𝑠𝑔𝑉

𝑐𝑖 “

𝑁
ÿ

𝑗“1
r𝑚𝑠𝑔𝑉 r 𝑗s “ 𝑚𝑖 s

Updated distribution over 𝜙` is given by

𝜙`|𝑚𝑠𝑔𝑉 , 𝛼` „ 𝐷𝑖𝑟p|𝑀|, 𝑐1 ` 𝛼`,1, ......., 𝑐𝑘 ` 𝛼`,𝑘q

3.4 Literal POMDP
Definition 3.1. We define literal POMDP as a tuple

x𝑆,𝐴,𝑇 , 𝑅,Ω,𝑂y

where A, T, R , Ω, and O are as defined in POMDP (Section
2.1). Literal POMDP augments the state space 𝑆 with the count
vector space 𝐶 . Each element of 𝑐 P 𝐶 corresponds to receiving the
message𝑚𝑖,𝑟 while on state 𝑠 . Thus 𝑠 “ x𝑠, 𝑐y

3.4.1 Belief Update for literal POMDP.
Proposition 1: The belief update for literal POMDP is defined as



Figure 2: A dynamic bayesian network showing two time
slices for literal POMDP

𝑃𝑟p𝑠𝑡 , 𝑐𝑡 |𝑜𝑡 ,𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“𝜂1𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1q
ÿ

𝑠𝑡´1

ÿ

𝑐𝑡´1

𝑰𝑐1 p𝝊p𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡
𝑟 qq

𝑃𝑟p𝑠𝑡 |𝑠𝑡´1, 𝑎𝑡´1q𝑃𝑟p𝑚𝑡
𝑟 |𝑠𝑡´1, 𝑐

𝑡´1, 𝑎𝑡´1q𝑏𝑡´1p𝑠𝑡´1, 𝑐𝑡´1q (2)

where 𝜂1 is the normalizing constant.

𝜂1 “
1

𝑃𝑟p𝑜𝑡 |𝑚𝑡
𝑟 , 𝑎𝑡´1, 𝑏𝑡´1q𝑃𝑟p𝑚𝑡

𝑟 |𝑎𝑡´1, 𝑏𝑡´1q

Analogous to POMDP belief update, which results in updated
distribution over the physical states 𝑠𝑡 after each action 𝑎𝑡´1 and
observation 𝑜𝑡 pair, the belief update for literal POMDP 1 results
in updated distribution over the physical states and count vectors
x𝑠𝑡 , 𝑐𝑡 y, after action 𝑎𝑡´1, observation 𝑜𝑡 and a message𝑚𝑡

𝑟 triplet.
This is analogous to how a BA-POMDP models and updates the
uncertainty over transition and observation functions [10]. The
bayesian network in figure 2, represents the belief update and en-
codes the conditional independence assumptions made during the
derivation.

𝑐 is a 2 dimensional vector of size |𝑀| ˆ |𝑆| recording counts
of received messages in each state. 𝑰𝑐𝑡 p𝑐𝑡 q is a indicator function
returning 1 if 𝑐𝑡 “ 𝑐𝑡 and 0 otherwise.𝝊p𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡

𝑟 q is a update
function which returns new count 𝑐𝑡 given previous count 𝑐𝑡´1,
state 𝑠𝑡´1 and message𝑚𝑡

𝑟 .
Table 3 shows the analogous terms in belief update between

literal POMDP and non-literal CIPOMDP
Proof of proposition 1:

1subscript 𝑖 denoting the agent is omitted

Table 3: Comparison of terms between literal POMDP and
CIPOMDP

Literal POMDP CIPOMDP
𝑂𝑖p𝑠

𝑡 , 𝑎
𝑡´1
𝑖

, 𝑜𝑡
𝑖
q 𝑂𝑖p𝑠

𝑡 , 𝑎𝑡´1, 𝑜𝑡
𝑖
q

𝑏
𝑡´1
𝑖

p𝑠𝑡´1, 𝑐𝑡´1q 𝑏
𝑡´1
𝑖

p𝑖𝑠𝑡´1q

𝑃𝑟p𝑚𝑡
𝑖,𝑟

|𝑠𝑡´1, 𝑐𝑡´1, 𝑎𝑡´1
𝑖

q 𝑃𝑟p𝑚𝑡
𝑖,𝑟
, 𝑎

𝑡´1
𝑗

|𝜃
𝑡´1
𝑗

q

𝑇𝑖p𝑠
𝑡´1, 𝑎𝑡´1

𝑖
, 𝑠𝑡 q 𝑇𝑖p𝑠

𝑡´1, 𝑎𝑡´1, 𝑠𝑡 q

𝑰𝑐𝑡 p𝝊p𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡
𝑟 qq

𝜏𝜃𝑡
𝑗
p𝑏

𝑡´1
𝑗

, 𝑎
𝑡´1
𝑗

,

m𝑡´1
𝑖,𝑠

, 𝑜𝑡
𝑗
,𝑚𝑡

𝑖,𝑟
, 𝑏𝑡

𝑗
q

𝑃𝑟p𝑠𝑡 , 𝑐𝑡 |𝑜𝑡 ,𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“
𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑐𝑡 ,𝑚𝑡

𝑟 , 𝑎
𝑡´1, 𝑏𝑡´1q𝑃𝑟p𝑠𝑡 , 𝑐𝑡 |𝑚𝑡

𝑟 , 𝑎
𝑡´1, 𝑏𝑡´1q

𝑃𝑟p𝑜𝑡 |𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“

𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1 ř

𝑠𝑡´1

ř

𝑐𝑡´1
𝑃𝑟p𝑠𝑡 , 𝑠𝑡´1, 𝑐𝑡´1, 𝑐𝑡 |𝑚𝑡

𝑟 , 𝑎𝑡´1, 𝑏𝑡´1q

𝑃𝑟p𝑜𝑡 |𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“𝜂𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1q
ÿ

𝑠𝑡´1

ÿ

𝑐𝑡´1
𝑃𝑟p𝑐𝑡 |𝑠𝑡 , 𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡

𝑟 , 𝑎
𝑡´1, 𝑏𝑡´1q

𝑃𝑟p𝑠𝑡 , 𝑠𝑡´1, 𝑐𝑡´1|𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“𝜂𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1q
ÿ

𝑠𝑡´1

ÿ

𝑐𝑡´1
𝑃𝑟p𝑐𝑡 |𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡

𝑟 q

𝑃𝑟p𝑠𝑡 |𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q𝑃𝑟p𝑠𝑡´1, 𝑐𝑡´1|𝑚𝑡
𝑟 , 𝑎

𝑡´1, 𝑏𝑡´1q

“𝜂1𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1q
ÿ

𝑠𝑡´1

ÿ

𝑐𝑡´1
𝑃𝑟p𝑐𝑡 |𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡

𝑟 q

𝑃𝑟p𝑠𝑡 |𝑠𝑡´1, 𝑎𝑡´1q𝑃𝑟p𝑚𝑡
𝑟 |𝑠𝑡´1, 𝑐𝑡´1, 𝑎𝑡´1, 𝑏𝑡´1q

𝑃𝑟p𝑠𝑡´1, 𝑐𝑡´1|𝑎𝑡´1, 𝑏𝑡´1q

“𝜂1𝑃𝑟p𝑜𝑡 |𝑠𝑡 , 𝑎𝑡´1q
ÿ

𝑠𝑡´1

ÿ

𝑐𝑡´1
𝑰𝑐𝑡 p𝝊p𝑠𝑡´1, 𝑐𝑡´1,𝑚𝑡

𝑟 qq

𝑃𝑟p𝑠𝑡 |𝑠𝑡´1, 𝑎𝑡´1q𝑃𝑟p𝑚𝑡
𝑟 |𝑠𝑡´1, 𝑐𝑡´1, 𝑎𝑡´1q𝑏𝑡´1p𝑠𝑡´1, 𝑐𝑡´1q

3.5 Algorithm
Since the size of the space of count vectors 𝐶 is enormous, we
cannot explicitly enumerate over each 𝑐 P 𝐶 as we do for 𝑠 P 𝑆 . In
fact, only a small subset of 𝐶 is possible starting from initial count
𝑐0 and for each message received 𝑚𝑡

𝑟 in subsequent time steps.
Thus we can construct 𝑠𝑡 “ x𝑠𝑡 , 𝑐𝑡 y dynamically as we proceed
with the belief update. Algorithm 1 shows the exact belief update
procedure for literal POMDP. Line 4 copies the count vector from
the previous time step and line 5 constructs the new count vector
using the received message and previous state. This updated count
vector will be part of the state space in the next time-step. Line 7
creates the new state dynamically and assigns the belief defined by
equation 2.

Algorithm 2 provides the particle filtering approach [8] to ap-
proximate the belief update for literal POMDP. Here the beliefs are
represented as a set of particles and each particle represents a pair
of state and a count vector. The particles for the next time steps
are generated by first sampling from the transition dynamic and
then assigning importance weight to the particles. Finally, particles
are resampled based on the importance weights. This extension
differs from the typical particle filtering in the sense that weights



are assigned not only according to observation likelihood but also
according to message likelihood as shown in lines 6-8.

Algorithm 1 Exact Belief Update for literal POMDP

Input: 𝑆,𝐴,𝑇 ,𝑂, 𝑜𝑡 ,𝑚𝑡 , 𝑎𝑡´1, 𝑏𝑡´1

Output: 𝑏𝑡

1: 𝑏𝑡 Ð tu

2: for 𝑠𝑡´1, 𝑝𝑟𝑜𝑏 Ð 𝑏𝑡´1 do
3: 𝑠𝑡´1, 𝑐𝑡´1 “ 𝑠𝑡´1

4: 𝑐𝑡 Ð 𝑐𝑜𝑝𝑦p𝑐𝑡´1q

5: 𝑐𝑡 Ð 𝑐𝑡 ` 𝛿𝑚
𝑡

𝑠𝑡´1

6: for 𝑠𝑡 Ð 𝑆 do
7: 𝑏𝑡 pp𝑠𝑡 , 𝑐𝑡 qq

`
Ð 𝑂p𝑠𝑡 , 𝑎𝑡´1, 𝑜𝑡 q

8: 𝑏𝑡´1pp𝑠𝑡´1, 𝑐𝑡´1qq𝑇 p𝑠𝑡´1, 𝑎𝑡´1, 𝑠𝑡 q

9: pp𝑐𝑡´1p𝑠𝑡´1,𝑚𝑡 q ` 1q{p
ř

𝑚 𝑐𝑡´1p𝑠𝑡´1,𝑚q

10: `|𝑀|qq

11: end for
12: end for
13: 𝑏𝑡 Ð 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒p𝑏𝑡 q

Algorithm 2 Approximate PF Belief Update for literal POMDP

Input: 𝑆,𝐴,𝑇 ,𝑂, 𝑜𝑡 ,𝑚𝑡 , 𝑎𝑡´1, 𝑏𝑡´1

Output: 𝑏𝑡

1: ˆ𝑏𝑡𝑡𝑒𝑚𝑝 Ð tu

2: 𝑊 𝑡 Ð tu

3: for 𝑠𝑡´1 Ð 𝑏𝑡´1 do
4: 𝑠𝑡´1, 𝑐𝑡´1 “ 𝑠𝑡´1

5: 𝑠𝑡 „ 𝑇 p𝑠𝑡 |𝑠𝑡´1, 𝑎𝑡´1q

6: 𝑤𝑡
𝑚 Ð pp𝑐𝑡´1p𝑠𝑡´1,𝑚𝑡 q ` 1q{p

ř

𝑚 𝑐𝑡´1p𝑠𝑡´1,𝑚q ` |𝑀|qq

7: 𝑤𝑡
𝑜 Ð 𝑂p𝑠𝑡 , 𝑎𝑡´1, 𝑜𝑡 q

8: 𝑊 𝑡 Y
Ð p𝑤𝑡

𝑜 ¨𝑤𝑡
𝑚q

9: 𝑐𝑡 Ð 𝑐𝑜𝑝𝑦p𝑐𝑡´1q

10: 𝑐𝑡 Ð 𝑐𝑡 ` 𝛿𝑚
𝑡

𝑠𝑡´1

11: 𝑠𝑡 Ð p𝑠𝑡 , 𝑐𝑡 q

12: ˆ𝑏𝑡𝑡𝑒𝑚𝑝
Y
Ð p𝑠𝑡 q

13: 𝑊 𝑡 Ð 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒p𝑊 𝑡 q

14: 𝑏𝑡 Ð 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒p ˆ𝑏𝑡𝑡𝑒𝑚𝑝 ,𝑊
𝑡 q

15: end for

4 EXPERIMENTS
4.1 Multi-Agent Tiger Game
In this benchmark, the agent is situated in front of two doors labeled
"left" and "right." The state of the system is characterized by the
presence of a tiger behind one of the doors and a pot of gold behind
the other, but the agent lacks knowledge of the exact location. The
state space is defined as S=TL, TR, where TL represents the presence
of the tiger behind the left door and TR represents the presence of
the tiger behind the right door. The agent has three possible actions:
opening the right door (OR), opening the left door (OL), or listening
(L).

The transition function T describes the change in state after an
action is taken. If an agent opens a door, the state resets to either TR
or TL with equal probability. However, if the agent listens, the state
changes according to transition noise. The observation function O
is used to determine the accuracy of the agent’s observation after
each action. The accuracy of observations is only guaranteed if
the agent listens, as the growl of the tiger can be heard coming
from either the left (GL) or the right (GR) door with a predefined
sensor accuracy. On the other hand, if the agent opens the doors,
the growls have an equal chance of coming from either the left or
right door, rendering the observations completely uninformative.

Figure 3: Comparison of entropy reduction for belief distri-
bution in communication vs no communication scenarios.
Here the sensor accuracy is varied while transition noise is
held constant

Figure 4: Comparison of entropy reduction for belief distri-
bution in communication vs no communication scenarios.
Here the sensor accuracy is held constant while the transi-
tion noise is varied

5 RESULTS
In this set of experiments, we fix the policy of the agent to take listen
action in each time step and assume it receives the same message in
each time step. We compare the reduction in entropy of the belief
distribution, between literal POMDP (with the communication),
and POMDP (without communication). The results are reported for
different settings of sensor accuracy (Figure 3), and transition noise



Figure 5: Performance of particle filtering algorithm in-
creases as we increase the number of particles

Figure 6: The plot showing the difference between actualmes-
sage distribution and the one learned by the literal POMDP
agent. After sufficient observations, the learned distribution
closely approximates the ground truth. The first row cor-
responds to the exact belief update while the second row
corresponds to the approximate belief update with particle
filtering

(Figure 4). In each case, the literal POMDP does better than POMDP
in reducing the entropy of the belief distribution. The approach
can be beneficial for the cooperative scenarios but might make the
agent susceptible to bait and switch strategy from the interacting
higher level agent. The study of the latter is left for the future work.

Next, in figure 5, we show the performance of the particle filter-
ing approach. The difference with the exact belief update is made
in terms of KL divergence. As we increase the number of particles,

we get closer to the posterior obtained from the exact belief update.
The results are averaged across 100 runs.

Finally, we investigate whether the agent is able to learn the true
message distribution after sufficient interaction with the environ-
ment. In each run, the message distribution is randomly generated
for all states. The agent interacts with the environment for 30
time-steps. After sufficient interaction, the literal POMDP is able
to approximate the true message distribution. The results are re-
ported for 10 episodes. Figure 6 shows the comparison for the exact
algorithm vs the particle filter algorithm in two states of the tiger
game.

6 CONCLUSION AND FUTUREWORK
Wedefined the principled approach to learningmessage distribution
for literal POMDP, lying at the bottom of the cognitive hierarchy in
CIPOMDPs. We empirically showed that the agent can approximate
the true message distribution after sufficient observations. The
particle filtering-based update method can be integrated to monte-
carlo tree-based solution approaches for CIPOMDPs. This allows
us to study how the agents higher in the cognitive hierarchy would
behave if they model the opponent as a literal POMDP, as opposed
to the strategic agent.
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