
Learning Complex Teamwork Tasks using a Sub-task
Curriculum

Elliot Fosong
University of Edinburgh

Edinburgh, United Kingdom

e.fosong@ed.ac.uk

Arrasy Rahman
University of Texas at Austin

Austin, TX, USA

arrasy@cs.utexas.edu

Ignacio Carlucho
University of Edinburgh

Edinburgh, United Kingdom

ignacio.carlucho@ed.ac.uk

Stefano V. Albrecht
University of Edinburgh

Edinburgh, United Kingdom

s.albrecht@ed.ac.uk

ABSTRACT
Training a team to complete a complex task via multi-agent rein-
forcement learning can be difficult due to challenges such as policy
search in a large policy space, and non-stationarity caused by mutu-
ally adapting agents. To facilitate efficient learning of complex multi-
agent tasks, we propose an approach which uses an expert-provided
curriculum of simpler multi-agent sub-tasks. In each sub-task of the
curriculum, a subset of the entire team is trained to acquire sub-task-
specific policies. The sub-teams are then merged and transferred to
the target task, where their policies are collectively fined tuned to
solve the more complex target task. We present MEDoE, a flexible
method which identifies situations in the target task where each
agent can use its sub-task-specific skills, and uses this information
to modulate hyperparameters for learning and exploration during
the fine-tuning process. We compare MEDoE to multi-agent rein-
forcement learning baselines that train from scratch in the full task,
and with naïve applications of standard multi-agent reinforcement
learning techniques for fine-tuning. We show that MEDoE outper-
forms baselines which train from scratch or use naïve fine-tuning
approaches, requiring significantly fewer total training timesteps to
solve a range of complex teamwork tasks.
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1 INTRODUCTION
In cooperative multi-agent reinforcement learning (MARL) [10], the
goal is to have a team of autonomous agents learn to complete a
task, by having the team gather and learn from experiences in that
task. Although MARL techniques have been used successfully to
solve a range of team-based tasks, there are still challenges in com-
plex tasks. These challenges include multi-agent credit assignment,
non-stationarity due to simultaneously adapting agents, difficulty
searching over a large joint action space, and equilibrium selection
problems [9]. These problems typically worsen when the number
of agents increases, or when complex coordinated behaviours are
required.

We propose addressing these problems and solving complex multi-
agent tasks by using a curriculum of sub-tasks. In this proposed
approach, the team is divided up into sub-teams, where each sub-
team is trained on a sub-task. Each sub-task is simpler, typically
with a smaller number of agents, but it allows the agents to acquire
skills relevant to the target task. We then recombine the sub-teams to
form a full team, and fine-tune their existing policies on the complex
target task in order to learn any skills not obtainable from the sub-
tasks alone. Intuitively, we expect that the existing policies of the
agents can bootstrap policy search in the complex target task, as the
initial stages of random search are bypassed.

For example, consider training five agents to play 5-a-side football
by breaking the problem up into attack drills with two attackers, and
defence drills with two defenders and one goalkeeper (Figure 1). The
attackers learn skills including “shooting on target” and “avoiding
being tackled” which are useful in the full 5-a-side football game.
Likewise, the defenders learn defensive skills useful in 5-a-side
football. When the attackers and defenders are recombined, extra
fine-tuning is required in the full 5-a-side football game, for example
to teach defenders that they ought to pass to their attacker teammates.

However, applying standard MARL algorithms to fine-tune sub-task-
skilled agents can actually slow training. One problem is overconfi-
dence in out-of-distribution scenarios: a seemingly “skilled” agent
might confidently take inappropriate actions, when it should instead
be exploring. However, using a high exploration rate in MARL can
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Figure 1: Sub-task Curriculum Diagram for 5-a-side Football

itself exacerbate equilibrium selection problems and reduce stability
of the training process. Therefore, exploration effort should be con-
centrated in situations which need it most, i.e., when agents’ existing
policies are inadequate. Another problem that arises particularly in
sparse-reward settings is forgetting: while the agents learn to coor-
dinate in the complex target task, they may forget the useful skills
they obtained during the sub-task training.

In this paper we present an approach that, given a curriculum of
sub-tasks, is able to train a team to complete a complex multi-agent
task. Our method, Modulating Exploration and Training via Domain
of Expertise (MEDoE), uses a domain of expertise (DoE) classifier
to determine when each agent’s existing policy is likely to be ade-
quate to solve the complex task. Returning to the football example,
a DoE classifier might classify a defensive scenario in 5-a-side foot-
ball (such as that shown on the right of Figure 1) as belonging to
each defender’s DoE, as the policies the defenders learned during
defence drills are also good in the 5-a-side game in this situation.
When an agent should exploit its existing policy, MEDoE reduces
non-stationarity by reducing the policy learning rate. On the other
hand, when an agent needs to learn new skills, MEDoE increases
the exploration temperature to encourage the agent to explore new
behaviours. MEDoE also controls the rate at which each agent for-
gets ineffective behaviours by modulating the entropy regularisation
coefficient. Finally, MEDoE uses behaviour priors [17], controlling
the rate at which each agent retains useful skills by modulating the
behaviour prior regularisation coefficient. To our knowledge, this
paper is the first to devise a method for accelerating MARL for
complex teamwork tasks using a sub-task curriculum.

We evaluate MEDoE in two different multi-agent environments,
Chainball and Overcooked. Our experiments show that MEDoE can
enable the use of a sub-task curriculum to significantly accelerate
MARL, even where naïve approaches which use standard MARL
techniques for fine-tuning fail. MEDoE is able to solve the Chainball
task (Section 4.1.1) where training from scratch converges to a sub-
optimal policy. Additionally, MEDoE learns to solve the complex
Overcooked task (Section 4.1.2), which is not solved by other base-
lines even when using 5 times as many training timesteps as MEDoE.
MEDoE can extend any actor-critic method, and can be used with

any number of agents. MEDoE can also be used in situations where
the size of the team in the complex target task may not be known
during training in the simple sub-tasks, allowing for flexibility with
respect to the target team composition, and re-use of sub-tasks in
curricula for different target tasks.

2 PROBLEM FORMULATION
In this section, we present the problem formulation providing the
framework for our approach. We first discuss our sub-task curricu-
lum formulation, in Sections 2.1 and 2.2. Then in Section 2.3, we
formalise the domain of expertise (DoE), which encodes the rela-
tionship between the simple source tasks in the curriculum to the
complex target task. Information about the DoE is then used to
inform our method, MEDoE, as discussed in Section 3.

2.1 Sub-task Curriculum
We define a Few-Shot Teamwork (FST) problem, which consists of
two stages: a source stage, where sub-teams of agents are trained
with respect to simple source tasks, and an adjustment stage, where
teams from the source stage are combined and fine-tuned to complete
the complex target task. This provides the framework for our sub-
task curriculum approach to accelerating MARL.

We model a set of 𝑀 source tasks, T 1, . . . ,T𝑀 , and a single tar-
get task T𝑇 . Each task T𝑚 is a common-reward task, and can be
modelled by a Dec-POMDP:

T𝑚 = ⟨𝑃𝑚,S𝑚,
{
A𝑚
𝑖

}
𝑖∈𝑃𝑚 ,𝑇𝑚,

{
Ω𝑚𝑖

}
𝑖∈𝑃𝑚 ,𝑂𝑚, 𝑅𝑚, 𝛾⟩, (1)

where 𝑃𝑚 is the set of agents (team); S𝑚 is the state space; A𝑚
𝑖

is
the action space for agent 𝑖; 𝑇𝑚 is the state transition probability
density function; Ω𝑚 is the observation space for agent 𝑖; 𝑂𝑚 is the
observation probability density function; 𝑅𝑚 is the reward function;
and 𝛾 is the discount factor.

In the source stage, 𝑀 disjoint sub-teams are created 𝑃1, . . . , 𝑃𝑀 :
one for each source task. Each team 𝑃𝑚 trains for 𝑁𝑚 training steps
in its source task T𝑚 using learning algorithm L𝑆 . This training gen-
erates a joint task policy 𝜋𝑚 , and optionally other data or functions
derived from the training process, such as a buffer of source stage
experiences, which may be used during the adjustment stage. In this
paper we assume the sub-task curriculum (the source tasks and the
sub-team partitioning) is provided by an expert.

In the adjustment stage, sub-teams are combined to form the target
task’s team, 𝑃𝑇 ⊆ ⋃𝑀

𝑚 𝑃𝑚 , and then learn to coordinate by practising
in the target task for a limited number of training steps, 𝑁𝐴, after
which the team is evaluated. During this stage, agents use learning
algorithm, L𝐴, designed to promote coordination and exploration of
the new task using the skilled source stage policies 𝜋𝑚 and other
data or functions derived during the source stage. At the end of the
𝑁𝐴 training steps, the performance of the new team is evaluated on
task T𝑇 , forming the optimisation objective of the FST problem.

2.2 Objective
The overall objective of the FST problem is to maximise the mean
returns of the final team on the target task T𝑇 in a limited number
of training steps. The main research problem is to maximise this



objective by designing the source and adjustment stage learning
algorithms, L𝑆 and L𝐴 respectively.

In this work, we focus on finding an adjustment stage learning
algorithm, L𝐴 which requires less training experience to achieve
desired performance on the target task than MARL baselines which
train from scratch. If the best baseline approach requires 𝑁 ⊙ training
steps to reach performance 𝐺⊙ from scratch on task T𝑇 , then a
successful approach to FST should reach performance 𝐺⊙ with
𝑁𝐴 +∑𝑀

𝑚 𝑁𝑚 ≪ 𝑁 ⊙ .

2.3 Domain of Expertise
It is impossible to find an algorithm which improves generalisa-
tion performance on average across an unconstrained set of source
and target tasks [22]. Therefore, we must introduce a relationship
between the source and target tasks. We introduce the notion of
a domain of expertise (DoE), which intuitively defines the set of
observations in a target task for which a given agent is skilled. We
impose the restriction that in the target task, there should typically
be at least one agent who is already skilled at some aspects of the
target task — i.e., that the DoEs of the new team in the target task
should occupy a large fraction of the visitation space of the optimal
policy on the target task.

Let 𝜋∗,𝑚
𝑖

be agent 𝑖’s policy in the optimal decentralised policy of
source task T𝑚 . Let Π∗,𝑇 be the set of optimal decentralised policies
of the target task. Assume a mapping 𝜙𝑚

𝑖
: Ω𝑇

𝑖
↦→ Ω𝑚

𝑖
between

agent 𝑖’s observation in the target task, and in the source task. Then,
we consider an observation 𝑜𝑖 ∈ Ω𝑇

𝑖
to be in the domain of expertise,

E𝑚,𝑇
𝑖

, of agent 𝑖 of task T𝑚 iff

∃𝜋∗,𝑇 ∈ Π∗,𝑇 , 𝐷𝐾𝐿 (𝜋∗,𝑚𝑖 (·|𝜙𝑚𝑖 (𝑜𝑖 )) ∥ 𝜋∗,𝑇𝑖 (·|𝑜𝑖 )) < 𝜏, (2)

where 𝜏 is a chosen similarity threshold, and 𝐷𝐾𝐿 is the KL diver-
gence. We present this formalisation of the DoE to provide context
for later discussion. However, the formalisation is not used directly
in the derivation of our method.

3 MODULATING EXPLORATION AND
TRAINING VIA DOMAIN OF EXPERTISE
(MEDOE)

In this section, we introduce our novel approach, Modulating Explo-
ration and Training via Domain of Expertise (MEDoE), designed
to facilitate efficient learning in the adjustment stage of a sub-task
curriculum. MEDoE identifies situations in the target which do not
require each agent to update its policy, and uses this information to
modulate each agent’s exploration and learning procedure. MEDoE
achieves this with two key components: a method for classifying
when a given target task observation is in an agent’s domain of exper-
tise (DoE); and a method for adapting and guiding exploration based
on the output of that DoE classifier. We discuss these components in
turn in the following subsections.

3.1 Domain of Expertise Classification
MEDoE relies on a domain of expertise classifier for each agent
𝑖, 𝐷𝑖 : Ω𝑇

𝑖
↦→ [0, 1], which classifies whether a given target task

observation lies within agent 𝑖’s DoE.

𝐷𝑖 (𝑜𝑖 ) =
{

1 if 𝑜𝑖 ∈ E𝑚,𝑇
𝑖

,

0 if 𝑜𝑖 ∉ E𝑚,𝑇
𝑖

.
(3)

In most cases, the ground truth DoE classifier 𝐷𝑖 will be unknown, as
in practice knowing the ground truth DoE classifier requires knowing
the set of 𝜖-optimal policies, Π𝜖 .

Therefore, we instead rely on an approximate DoE classifier, �̂�𝑖 ,
which outputs probabilistic classifications. In this work, we propose
two types of approximate DoE classifiers: i) a expert-provided clas-
sifier, and ii) a learned classifier. The first classifier is provided by
an expert, as in our experiments in Section 4. We use these expert-
provided DoE classifiers to act as an approximation to a ground-truth
DoE classifier, allowing us to study the performance of MEDoE in
isolation from the problem of learning a DoE classifier. However, in
some applications, expert knowledge might be unavailable or might
be difficult to obtain. In those cases, it may be possible to learn
adequate DoE classifiers from training experience. We developed
a simple binary learned DoE classifier as a proof-of-concept, and
show the feasibility of this approach in Section 4.3.3.

The learned DoE classifier trains a multi-layer perceptron (MLP),
�̂�𝑖 , for each agent 𝑖 in the target task team 𝑃𝑇 . The classifier train-
ing is formulated as a binary classification problem where positive
examples are taken from agent 𝑖’s source task experience buffer, and
negative examples are taken from the experience buffers of all agents
trained in a different source task to 𝑖. In this way, the MLP learns
to identify features of the observation which differ between differ-
ent source tasks, which are likely to correspond to the conditions
relevant to domain of expertise. For example, a classifier trained
to distinguish between sample observations from attack drills and
defence drills in football might identify the position of the ball on the
pitch as a feature of interest. Such a classifier is likely to be adequate
for DoE classification, as when the ball is near the opponents’ goal,
the attackers’ policies learned during attack drills are near optimal,
so only the defenders need to learn to, e.g., position correctly in the
case of a counter-attack.

3.2 Exploration Modulation
The key aspect of MEDoE is the modulation of the exploration
and training process in the adjustment stage, informed by the DoE
classifier. In this paper, we focus on our variant of MEDoE based
on proximal policy optimisation (PPO) [13], which modulates four
quantities:

(1) the policy entropy regularisation coefficient, 𝛼 ;

(2) the policy KL regularisation coefficient, 𝜅;

(3) the PPO clipping coefficient, 𝛿; and

(4) the action selection temperature, 𝑇 .

In this section, we discuss the intuition behind the modulation of
these quantities, and provide a description of MEDoE. Throughout
the section, for convenience we call agents experts when the current
observation is in their DoE; and as non-experts otherwise. Each



agent is an expert for some observations, and a non-expert for others.
See Algorithm 1 (Appendix A) for our PPO variant of MEDoE.

Non-experts should forget irrelevant skills, and experts should
be slow to forget useful skills. During the source task, agents learn
skills which are relevant to the completion of the target task, but
also skills which might be irrelevant. Such irrelevant skills can
arise from differences in skill requirements between source and
target tasks, or from extrapolation. Ideally, agents should quickly
forget irrelevant behaviours. However, at the same time they must
retain useful skills, which may be difficult in settings which require
complex coordination or with sparse rewards, as forgetting can occur
during extended low-reward periods.

To control the rate of forgetting skills, MEDoE modulates two pa-
rameters. Firstly, we use entropy-regularised policies, and encourage
non-experts to forget irrelevant skills by increasing non-experts’

entropy regularisation coefficient, setting 𝛼𝑖 = 𝛼base × 𝛽
(1−�̂�𝑖 (𝑜𝑖 ) )
𝛼 ,

where 𝛼base is the base entropy coefficient, and 𝛽𝛼 > 1 is the entropy
boost coefficient.

Secondly, we use fixed behaviour priors [17] to encourage experts
to retain useful skills. This entails using KL-regularised policies
(see Equation (5)), where we aim to minimise the KL divergence
between the agent’s current policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ), and its frozen source
stage policy 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃BP

𝑖
), thereby encouraging the agent to stay

close to its source stage behaviour. We boost the KL regularisation

coefficient for experts, setting 𝜅𝑖 = 𝜅base × 𝛽
�̂�𝑖 (𝑜𝑖 )
𝜅 .

Non-experts should quickly adapt their behaviour, and experts
should be slow to update their behaviour. In multi-agent systems,
when multiple agents are learning and changing their behaviours
over time, this presents a learning agent with a moving target in terms
of optimal behaviour. This non-stationarity makes learning stable
team policies more difficult than if only one agent were adapting at
a time. MEDoE addresses this problem by using the fact that experts
do not need to update their policies. In our PPO-based version of
MEDoE, we modulate the PPO clipping coefficient, which controls
by how much the policy may be updated in a given step. We limit
the policy update size using a low baseline clipping coefficient, 𝛿base

and set 𝛿𝑖 = 𝛿base × 𝛽
(1−�̂�𝑖 (𝑜𝑖 ) )
𝛿

.

Non-experts should explore to learn new skills, and experts should
be predictable to other agents by exploiting existing skills. By defini-
tion, non-expert agents need to learn new behaviours. To do so they
must explore. Exploration in multi-agent systems can have negative
effects on learning, such as reducing training stability, and increasing
the difficulty of selecting equilibrium which require stable coordi-
nation. We therefore aim to restrict exploration to situations where
it is necessary, i.e., when agents are non-experts. MEDoE takes a
simple approach: modulate an agent’s exploration parameter using
that agent’s DoE classifier. For the PPO-based MEDoE, the relevant
exploration parameter is the stochastic action selection temperature:

𝑎𝑖 ∼ 𝜋 (·|𝑜𝑖 ;𝑇𝑖 = 𝑇base × 𝛽
(1−�̂�𝑖 (𝑜𝑖 ) )
𝑇

), ∀𝑖 ∈ 𝑃 . (4)

During evaluation, we fix the action selection temperature to 𝑇base.
We therefore apply an importance sampling reweighting 𝑤𝑖 (Equa-
tion (7)) during training.

Ultimately, we minimise the following policy and value losses for
each agent 𝑖 in the target team:

L (𝜃𝑖 ) =𝑤𝑖PPOClip(𝐴𝑖 , 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ), 𝛿𝑖 )
− 𝛼𝑖𝐻 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ))

+ 𝜅𝑖𝐷𝐾𝐿 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ) ∥ 𝜋𝑖 (·|𝑜𝑖 ;𝜃BP
𝑖 )),

(5)

where PPOClip(𝐴, 𝜋, 𝛿) is the PPO policy ratio clipping function
described by Schulman et al. [13] with clipping coefficient 𝛿 , and

L (𝜓𝑖 ) = 𝑤𝑖 ∥𝐺𝑡 :𝑡+𝑛 −𝑉𝑖 (𝑜𝑖 ;𝜓𝑖 )∥2
2 . (6)

In Equations (5) and (6), we compute the importance weight for
agent 𝑖,

𝑤𝑖 =
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇base)
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇𝑖 )

, (7)

the advantage function for agent 𝑖,

𝐴𝑖 = (𝐺𝑡 :𝑡+𝑛 −𝑉𝑖 (𝑜𝑖,𝑡 ;𝜓𝑖 )), (8)

and the 𝑛-step return for agent 𝑖,

𝐺𝑡 :𝑡+𝑛 = 𝛾𝑛𝑉𝑖 (𝑜𝑖,𝑡+𝑛 ;𝜓𝑖 ) +
𝑛−1∑︁
𝑖=0

𝛾𝑖𝑟𝑡+𝑖 . (9)

4 EXPERIMENTS
Our experiments aim to answer the following questions:

(1) Can MEDoE aid in solving complex multi-agent tasks with
fewer total training timesteps than training from scratch? Does
MEDoE provide benefit over fine-tuning using standard MARL
algorithms?

(2) How sensitive is MEDoE to hyperparameter selection?

(3) Is it feasible to obtain an approximate DoE classifier from source
task experience which enables MEDoE to outperform baseline
approaches?

(4) To what extent are behaviour priors responsible for the perfor-
mance of MEDoE?

4.1 Environments
To test our approach, we consider two environments with clear task
decompositions: Chainball, a simple environment we introduce to
provide insight into our method; and Overcooked [19], a complex
environment common in MARL research. We define the observa-
tion space in each environment such that the observation translation
mapping 𝜙 between source and target tasks can be the identity func-
tion. In each environment, we normalise the rewards such that the
maximum expected episodic return lies in [0, 1]. Further details of
each environment and the expert-provided DoE classifiers for each
environment can be found in Appendix C.

4.1.1 Chainball. We introduce the Chainball environment as a
simple example to test MEDoE. We design Chainball to mimic
the compositional properties of our football motivating example,
while allowing for simple evaluation, and use of tabular methods.
“Chainball-𝑁 ” (Figure 2) consists of 𝑁 states, 𝑠 ∈ {1, . . . , 𝑁 }. At
timestep 𝑡 , each of four agents chooses an action 𝑎𝑡,𝑖 ∈ {1, 2, 3, 4}.
We define the forward probability of taking joint action a𝑡 in state
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Figure 2: Chainball-5 Environment. Here states are re-labelled
with GK (goalkeeper), D (defence), M (midfield), and A (attack).
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Figure 3: Overcooked Sub-task Curriculum. In the target task,
agents must coordinate to pass and chop the tomato at the chop-
ping board (1,2), put the chopped tomato on a plate (3), and
pass the plate with chopped tomato back to serve at the starred
counter (4,5). The skills to complete steps 2 and 3 can be learned
in the “Right” source task; and skills to complete step 5 can be
learned in the “Left” source task. Steps 1 and 4 require learning
new behaviour in the target task.

𝑠 as 𝑓𝑠 (a𝑡 ) = 𝑇 (𝑆𝑡+1 = 𝑠 + 1|𝑆𝑡 = 𝑠, a𝑡 ). For 𝑠 = 𝑁 , rather than tran-
sitioning to non-existent state 𝑁 + 1, the agents score and get a
reward of +1, and the state transitions to a restart (kick-off) state
(in Figure 2, the M state). If the state does not transition forward to
state 𝑠 + 1, it transitions backwards to state 𝑟 < 𝑠 with probability
proportional to 1.5𝑟−𝑠 . This intuitively corresponds to an “opposing
team” getting possession of the ball. For 𝑠 = 1, if the state transi-
tion backwards, the team concedes a goal, receiving a reward of -1,
and the state transitions to the restart state. Chainball is an episodic
task, which terminates after 90 timesteps. Chainball has two source
tasks, Chainball-𝑁 -Att and Chainball-𝑁 -Def, to emulate attack and
defence drills respectively. These source tasks have two agents each.
Each source task consists of 𝑁 states, but we make states 𝑠 < 𝑠Att
terminal states in Chainball-𝑁 -Att, and states 𝑠 > 𝑠Def terminal
states in Chainball-𝑁 -Def. Finally, both source tasks terminate if a
terminal state is reached, or if a goal is scored or conceded, or after
90 timesteps. Our experiments use 𝑁 = 11.

4.1.2 Overcooked. Overcooked [19] is a complex environment
which requires multi-step coordination by agents. The goal of Over-
cooked is to complete a recipe by moving and processing foods in
a grid world. Figure 3 shows the configuration of our Overcooked

target task and sub-task curriculum. The team is rewarded for com-
pleting each step in the recipe, except steps 1 and 4 in the target
task.

4.2 Protocol & Baselines
For each source task, we generate four seeds of skilled sub-teams
by training agents using the standard independent PPO (IPPO) algo-
rithm until convergence. As we consider fully-observable settings,
IPPO is equivalent to the independent multi-agent PPO (MAPPO)
algorithm [10]. In Chainball, we use tabular actors and critics;
whereas in Overcooked we use deep learning. The number of train-
ing timesteps in each source task is task-dependent. We report the
number of timesteps used for each source task in Appendix B. We
save the final actors, critics, and experience buffer from each source
task seed. The experience buffer stores a number of source task ob-
servations for each agent: 40,000 observations per agent in Chainball
and 320,000 in Overcooked.

In our experiments, our MEDoE baselines employ the IPPO-based
MEDoE approach described in Section 3 and Algorithm 1. We ini-
tialise each agent’s actor and critic using an actor and critic from
the source task, and use that same actor as the agent’s behaviour
prior. We consider two variants of our MEDoE algorithm: MEDoE
(Expert), which uses a expert-provided DoE classifier, as described
in Section 4.1; and MEDoE (MLP), which learns a classifier from
source task experience according to the protocol described in Sec-
tion 3.1.

As we are not aware of any existing methods that use a sub-task
curriculum for accelerating MARL, we compare MEDoE to abla-
tions and standard MARL baselines. The motivation for MEDoE
is to accelerate learning a complex teamwork task relative to stan-
dard MARL approaches, which train from scratch on the complex
task. We therefore consider the from-scratch baseline, which ap-
plies IPPO directly to the target task, starting from randomly ini-
tialised actor and critic networks. We aim to show that MEDoE is
responsible for improving performance where naïve MARL fine-
tuning approaches fail. Therefore, we create a pre-skilled (BP)
baseline, which is initialised in the same way as MEDoE, but does
not modulate training parameters, nor uses a DoE classifier. Finally,
in Section 4.3.4 we investigate the role of behaviour priors in the
performance of MEDoE. We therefore consider ablations of ME-
DoE (Expert) and pre-skilled (BP). In these ablations, MEDoE
(Expert, no-BP) and pre-skilled (no-BP) respectively, we do not
use behaviour priors, setting the KL coefficient to zero.

4.3 Results
4.3.1 MEDoE Performance. In Figure 4, we report the adjust-
ment stage training episodic return curves for each of the baselines
on the target task. For baselines where we use source stage training
data, we shift the training curves to account for the total source
stage training timesteps of the target task team, in order to make
a fair comparison to the from-scratch baseline. In each environ-
ment, we consider 16 pairing of source task agents and 5 seeds,
for a total of 80 training runs per baseline. These results show that
both MEDoE baselines, MEDoE (Expert) and MEDoE (MLP),
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Figure 4: Adjustment stage training returns for each environ-
ment. Mean episodic returns (100 episodes), averaged over 80
runs (5 seeds and 16 different teams per seed). The from-scratch
baseline is averaged over 16 runs (16 seeds). Shaded area shows
the 95% confidence interval of the mean over the runs. The pre-
skilled and MEDoE baselines are shifted on the training step
axis to account for the total training timesteps required to obtain
the source task agents.

(a) Entropy coef. boost (b) KL coef. boost

(c) PPO clip coef. boost (d) Temperature boost

Figure 5: Sensitivity to hyperparameters in Chainball. We fix
each of the four MEDoE boost parameters, then choose one to
randomly sample. We compute 1024 samples for each parameter,
and report the AUC (the area under the mean episodic return
training curve during the adjustment stage) for each parameter
setting.

significantly outperforms the from-scratch baseline in both envi-
ronments, supporting our claim that MEDoE can greatly reduce the
amount of training timesteps required to solve complex teamwork
tasks. The results also show that the naïve fine-tuning approaches
(pre-skilled baselines) can fail to outperform the from-scratch base-
line. In Chainball (Figure 4a), we see that naïve MARL fine-tuning
performs comparably to the from-scratch baseline, whereas in Over-
cooked (Figure 4b), we find that the pre-skilled baselines actually
perform significantly worse than the from-scratch baseline. This
may in part explain why expert-based sub-task curriculum methods
are not yet a popular approach in MARL. However, MEDoE opens
new avenues of research in this direction.

4.3.2 Hyperparameter Sensitivity. Next, we examine the sensi-
tivity of MEDoE to hyperparameters in the Chainball environment.
Figure 5 shows the area under curve (AUC) for randomly sampled
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Figure 6: Forgetting curve in Overcooked

hyperparameter settings. For each sample, we fix each of the four
MEDoE boost parameters, and then choose one to randomly sample.
The AUC provides a measure that captures both the level of returns
of that training run, in addition to how quickly that level was reached.
In other words, quickly reaching high level of return leads to high
AUC. MEDoE does not appear to be particularly sensitive to the
entropy coefficient boost or to the PPO clipping coefficient boost, but
larger values of the KL coefficient boost improve the performance
of MEDoE. Lastly, MEDoE is sensitive to the temperature boost
coefficient, with the highest performance at 𝛽𝑇 = 3, but any setting
between 1 and 5 outperforms the baseline performance of no tem-
perature boost. These results suggest that MEDoE is not extremely
sensitive to hyperparameters selection. As a consequence, we do not
expect MEDoE to significantly increase the difficulty of hyperpa-
rameter search. However, when tuning, careful attention should be
given to the temperature boost coefficient.

4.3.3 Learned Classifiers. Figure 4 shows that in both Over-
cooked and Chainball, MEDoE can perform just as well with a
DoE classifier learned from source task data as when using our
expert-based DoE classifiers. This performance is achieved even
when using a simple MLP-based DoE classifier, as described in
Section 3.1. Though MEDoE performance is sufficient to demon-
strate the feasibility of obtaining classifiers from source task data,
we further test the quality of the obtained binary MLP classifiers
by examining two classifier loss metrics in Overcooked. Firstly, we
consider the binary cross-entropy loss of the classifier when dis-
tinguishing between examples from different source tasks. Using a
held-out evaluation set, we find that compared to a loss of 0.6931
(log 2) for a uniform random classifier, for the learned classifier the
binary cross-entropy loss is 0.0045 ± 0.0001, which corresponds to
a highly accurate classifier. Secondly, we compare the classifica-
tions of the learned classifier to that of the expert-provided classifier
by computing the binary cross-entropy loss across a collection of
160,000 observations collected in the target task by a converged pol-
icy from our experiments in Section 4.3.1. We find that the learned
classifier has a loss of 0.38 ± 0.01 for the “Left” task agent’s DoE,
and 3.44 ± 0.02 for the “Right” task agent. The classifier performs
poorly for the “Right” task agent, suggesting further work to obtain
higher quality DoE classifiers might be useful. However, by exam-
ining the learned classifier manually, we find that the “Right” task
DoE classifier is confidently incorrect for only a small portion of the
trajectory, which may explain why the relatively large cross-entropy
loss does not correspond to reduced MEDoE performance.



4.3.4 Role of Behaviour Priors. We also examine the advantage
of using behaviour priors as a part of MEDoE. Firstly, in Figure 4b
we show the performance of the MEDoE (Expert, no-BP) abla-
tion in Overcooked. While this ablation still significantly outper-
forms pre-skilled and from-scratch baselines, it performs poorly
compared to MEDoE (MLP) and MEDoE (Expert) which use
behaviour priors. This suggests MEDoE’s benefits do not derive
solely from the use of behaviour priors, but that without behaviour
priors, MEDoE is more unreliable and slower to converge to optimal
policies. Secondly, in Figure 6, we show the performance of each
Overcooked agent in the source task in which that agent was trained,
as both agents are fine-tuned during the adjustment stage. While it is
possible that an agent could be making rapid progress on the target
task while its source task evaluated episodic returns decreases, these
returns provide intuitive insight into the role of behaviour priors in
MEDoE. High source task return suggests the agent has not forgotten
relevant sub-task skills. When behaviour priors are not used, agents
are prone to forgetting sub-task skills.

5 RELATED WORK
To address challenges in multi-agent reinforcement learning, prior
methods also investigated modulating training parameters. In WoLF-
PHC [1] and extensions [2], each agent’s policy learning rate is
modulated according to the intuition that an agent’s policy learning
rate should be high when it is underperforming relative to its expec-
tations, and low otherwise. More recently, MA2QL [14] focuses on a
team learning setting. Instead of letting agents learn simultaneously,
MA2QL tackles non-stationarity by allowing only one agent to learn
at a time.

Work by Vrancx et al. [18] considers transfer from simple tasks to
complex target tasks in multi-agent systems. They train a classifier
to distinguish between cases in which agents can learn individually,
and cases in which they must learn to coordinate as part of a team.
Though similar to our DoE classifier, one key difference is that our
DoE classifier attempts to classify states in which further learning
is not required, rather than states in which agents continue to learn
without paying attention to other agents.

Wang et al. [21] also accelerate learning of complex multi-agent
tasks using a curriculum. However, it focuses on cases in which
the number of agents is progressively increased throughout the cur-
riculum. By contrast, in our work we consider cases in which we
decompose the task based not upon the number of agents, but the
different skills required by agents in the target task. Similarly, recent
work by Tang et al. [15] considers scenarios in which agents join
an unfamiliar team, and have to rapidly learn to adapt to coordi-
nate with the new team to complete a known task. In contrast with
our work, Tang et al. [15] vary only the number of agents between
source and target tasks, while the underlying dynamics remain the
same. Taylor et al. [16] consider parallel transfer learning, which
transfers experiences collected in parallel by separate agents into a
target agent, similarly to federated reinforcement learning [12]. In
contrast, our work does not directly transfer skills into individual
agents, but instead attempts to accelerate the progress of the team’s
performance.

Several single-agent RL methods use a multi-agent approach to
curriculum learning [3, 7, 11]. However, these methods focus on
the curriculum design problem (i.e., generating the series of tasks
that form the curriculum) by treating it as a two-player game. We
instead focus on the problem of accelerating learning at each stage
in the curriculum, when the target task and decomposed sub-tasks
are given as input by an expert.

The problem of effective fine-tuning on new tasks often appears in
the continual learning literature, typically in single-agent settings.
[8] propose using the card game Hanabi as a test-bed for continual
learning in multi-agent settings. [5] engineer an approach to train
humanoid agents to play 2-vs-2 football, which, like MEDoE, uses
behaviour priors [17]. However, their solution is complex and spe-
cific to humanoid football, whereas MEDoE is a simple approach,
applicable in a range of settings.

Finally, some works consider the assignment of agents into different
roles, where agents assigned to the same role employ similar policies
[20]. In our case, we assume roles do not have to be discovered, and
are instead provided implicitly via the given sub-task decomposition.

6 CONCLUSION AND FUTURE WORK
In this work, we presented Modulating Exploration and Training
via Domain of Expertise (MEDoE): a method for solving complex
MARL problems. MEDoE uses a curriculum of sub-tasks, given by
an expert, and modulates training and exploration of each agent on
the target task. Each agent’s modulation is controlled by a domain
of expertise classifier that provides information about whether the
agent’s policy is likely to be useful in the target task, given the
current observation. This information is then used by MEDoE to
adapt the rate at which each learns or forgets, and how much the
agent should explore. Our experiments extend the IPPO algorithm,
though any actor-critic method can be modified to produce a MEDoE
version, allowing designers to choose the most appropriate learning
algorithms for their task. As MEDoE acts on individual agents, the
total computational cost of using MEDoE scales linearly with the
number of agents. Furthermore, MEDoE does not require a fixed
choice of number of agents in the source and target tasks, meaning it
can be used in situations where teams are formed on an ad hoc basis
[6] without prior knowledge of the number of agents.

We evaluated MEDoE in two multi-agent environments – Chainball
and Overcooked, and compared it to a number of baselines. Our
results show that MEDoE is able to significantly speed up learning
in complex multi-agent tasks. We also evaluated two types of domain
of expertise classifiers: an expert based one and a learned classifier.
Results show that a learned classifier with simple neural networks
architectures is a feasible approach that can be readily integrated into
MEDoE without significantly impacting the overall performance.

While MEDoE has many advantages, the work could be extended in
multiple directions. Firstly, we assumed the target task and the sub-
task curriculum was provided. In practice it might not be feasible to
provide such a curriculum. For example, even human experts might
not know how to decompose a task, or find it too time-consuming
particularly when attempting to derive a multi-step curriculum. Au-
tomated sub-task decomposition based on experience in the complex



task is an open challenge [4]. Secondly, while our experiments pro-
vide a proof-of-concept that DoE classifiers can be learned from
source task data, the classifiers used are simple and might not be
applicable to more realistic tasks. Alternative approaches to obtain-
ing DoE classifiers could be investigated and tested. Future work
could also study methods for updating DoE classifiers throughout
the adjustment stage, in order to reflect new skills learned during the
adjustment stage, or to correct for inaccuracies in the learned DoE
classifier.
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A PPO-MEDOE ALGORITHM
In this section we present our version of MEDoE based on the proxi-
mal policy optimisation (PPO) algorithm. We present a 1-step return
version for clarity, but the extension to 𝑛-step is straightforward.
MEDoE could also be used to extend other actor-critic algorithms in
a similar manner.

B HYPERPARAMETER SETTINGS FOR
EXPERIMENTAL RESULTS

Table 1 reports the hyperparameters used in our experiments. We
choose the hyperparameters by using common hyperparameters for
IPPO. We additionally perform an optimisation sweep to select the
entropy coefficient and actor learning rates, and set the critic learning
rate to be 2 times greater than the actor learning rate. We choose
MEDoE hyperparameters in both environments on the basis of a
hyperparameter sweep in the chainball environment.

C ADDITIONAL ENVIRONMENT DETAILS
C.1 Chainball
C.1.1 Environment Description. We introduce the Chainball
environment as a simple example to test MEDoE. We designed
Chainball to mimic the compositional properties of our football
motivating example, while allowing for simple evaluation, and use
of tabular methods. “Chainball-𝑁 ” (Figure 7) consists of 𝑁 states,
𝑠 ∈ {1, . . . , 𝑁 }. At timestep 𝑡 , each of four agents chooses an action
𝑎𝑡,𝑖 ∈ {1, 2, 3, 4}. We define the forward probability of taking joint
action a𝑡 in state 𝑠 as 𝑓𝑠 (a𝑡 ) = 𝑇 (𝑆𝑡+1 = 𝑠 + 1|𝑆𝑡 = 𝑠, a𝑡 ). For 𝑠 = 𝑁 ,
rather than transitioning to non-existent state 𝑁 + 1, the agents score
and get a reward of +1, and the state transitions to a restart (kick-off)
state (in Figure 7, the M state). If the state does not transition forward
to state 𝑠 + 1, it transitions backwards to state 𝑟 < 𝑠 with probability
proportional to 1.5𝑟−𝑠 . This intuitively corresponds to an “opposing
team” getting possession of the ball. For 𝑠 = 1, if the state transition
backwards, the team concedes a goal, receiving a reward of -1, and
the state transitions to the restart state. Chainball is an episodic
task, which terminates after 90 timesteps. Chainball has two source
tasks, Chainball-𝑁 -Att and Chainball-𝑁 -Def, to emulate attack and
defence drills respectively. These source tasks have two agents each.



Algorithm 1 PPO-MEDoE (1-step)

Require: Team of agents 𝑃 with policies {𝜋𝑖 (𝑎 |𝑜 ;𝜃𝑖 ) : 𝑖 ∈ 𝑃} and
critics {𝑉𝑖 (𝑜 ;𝜓𝑖 ) : 𝑖 ∈ 𝑃}

Require: Domain of Expertise classifiers,
{
�̂�𝑖 : 𝑖 ∈ 𝑃

}
Require: Hyperparameters 𝑇base, 𝛿base, 𝛼base, 𝛽𝑇 , 𝛽𝛿 , 𝛽𝛼 .

Set behaviour priors 𝜃BP
𝑖

given initial policy parameters 𝜃𝑖 .
Observe initial state 𝑠0
for 𝑡 = 0 to 𝑇max − 1 do

Compute boosted exploration coefficient, ∀𝑖 ∈ 𝑃

𝑇𝑖 = 𝑇base × 𝛽
(1−�̂�𝑖 (𝑜𝑖,𝑡 ) )
𝑇

Sample action 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑜𝑖,𝑡 ;𝑇 = 𝑇𝑖 ), ∀𝑖 ∈ 𝑃

Take joint action a, observe next state 𝑜 𝑗𝑡+1 ∼ 𝑇 (·|𝑠𝑡 , a) and
receive reward 𝑟𝑡 = 𝑅(𝑠𝑡 , a𝑡 )
for 𝑖 ∈ 𝑃 do

Compute importance weight (with stop grad)

𝑤𝑖 =
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇base)
𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ,𝑇 = 𝑇𝑖 )

Compute 1-step return 𝐺𝑡 :𝑡+1 = 𝑟𝑡 + 𝛾𝑉𝑖 (𝑜𝑖,𝑡+1;𝜓𝑖 )
Compute critic loss

L (𝜓𝑖 ) = 𝑤𝑖
𝐺𝑡 :𝑡+1 −𝑉𝑖 (𝑜𝑖,𝑡 ;𝜓𝑖 )

2
2

Compute advantage 𝐴𝑖 = 𝐺𝑡 :𝑡+1 −𝑉𝑖 (𝑜𝑖,𝑡 ;𝜓𝑖 )
Compute boosted learning coefficients

𝛼𝑖 = 𝛼base × 𝛽
(1−�̂�𝑖 (𝑜𝑖,𝑡 ) )
𝛼

𝜅𝑖 = 𝜅base × 𝛽
�̂�𝑖 (𝑜𝑖,𝑡 )
𝜅

𝛿𝑖 = 𝛿base × 𝛽
(1−�̂�𝑖 (𝑜𝑖,𝑡 ) )
𝛿

Compute actor loss

L (𝜃𝑖 ) =𝑤𝑖PPOClip(𝐴𝑖 , 𝜋𝑖 (𝑎𝑖 |𝑜𝑖 ;𝜃𝑖 ), 𝛿𝑖 )
− 𝛼𝑖𝐻 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ))

+ 𝜅𝑖𝐷𝐾𝐿 (𝜋𝑖 (·|𝑜𝑖 ;𝜃𝑖 ) ∥ 𝜋𝑖 (·|𝑜𝑖 ;𝜃BP
𝑖 ))

Update 𝜃𝑖 and𝜓𝑖 using gradient descent
end for

end for
return Optimised target task policies {𝜋𝑖 (𝑎 |𝑜 ;𝜃𝑖 ) : 𝑖 ∈ 𝑃} and
critics {𝑉𝑖 (𝑜 ;𝜓𝑖 ) : 𝑖 ∈ 𝑃}

Each source task consists of 𝑁 states, but we make states 𝑠 < 𝑠Att
terminal states in Chainball-𝑁 -Att, and states 𝑠 > 𝑠Def terminal
states in Chainball-𝑁 -Def. Finally, both source tasks terminate if a
terminal state is reached, or if a goal is scored or conceded, or after
90 timesteps. Our experiments use 𝑁 = 11, 𝑠def = 6 and 𝑠def = 6.

For each state, we store a forward probability table 𝐹 , defined such
that

𝐹𝑠 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝑇 (𝑆𝑡+1 = 𝑠 + 1|𝑆𝑡 = 𝑠,

a𝑡 = (𝑎1, 𝑎2, 𝑎3, 𝑎4)) .
(10)

For each run seed, we generate each element of the table uniformly
randomly in the interval [0, 0.5], and then, for each state we set one

Hyperparameter Chainball Overcooked

General hyperparameters
Discount rate (𝛾) 0.99 0.99
GAE 𝜆 0.95 0.95
𝑛-steps 4 16
Optimiser Adam Adam
Adam 𝜖 1 × 10−5 1 × 10−5

Gradient Clipping False False
Actor learning rate 1 × 10−2 2 × 10−4

Critic learning rate 2 × 10−2 4 × 10−4

Entropy coefficient (𝛼) 1 × 10−5 8 × 10−3

Actor architecture Tabular FC, ReLU,
hidden: [256, 128]

Critic architecture Tabular FC, ReLU,
hidden: [256, 128]

PPO clip coef. (𝛿) 0.1 0.1
PPO epochs 2 2
PPO num. minibatches 1 1
PPO value clipping False False
Parallel environments 8 32
KL coefficient (𝜅) 8 × 10−3 8 × 10−3

MEDoE-specific hyperparameters
Base temp. (𝑇base) 1 1
Base KL coef. (𝜅base) 1.3 × 10−4 3.2 × 10−3

Base ent. coef. (𝛼base) 1.6 × 10−6 1.3 × 10−3

Base clip coef. (𝛿base) 2.5 × 10−4 2 × 10−4

Temp. boost (𝛽𝑇 ) 3 3
KL coef. boost (𝛽𝜅 ) 40 40
Ent. coef. boost (𝛽𝛼 ) 40 40
Clip coef. boost(𝛽𝛿 ) 400 400

Table 1: Hyperparameter settings for baselines used in experi-
ments

of the 44 = 256 elements to 0.8 to represent a known optimal joint
action. To reduce the difficulty for the full task with 4 players, we
make the optimal action in state 5 depend only on the joint action of
(𝑎1, 𝑎3), and the optimal action in state 7 depend only on the joint
action of (𝑎2, 𝑎4):

∀𝑎1, 𝑎3, 𝑎
′
1, 𝑎

′
3, 𝐹5 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝐹5 (𝑎′1, 𝑎2, 𝑎

′
3, 𝑎4),

∀𝑎2, 𝑎4, 𝑎
′
2, 𝑎

′
4, 𝐹7 (𝑎1, 𝑎2, 𝑎3, 𝑎4) = 𝐹7 (𝑎1, 𝑎

′
2, 𝑎3, 𝑎

′
4) .

We apply a similar procedure to populate the forward probability
tables for the attack and defence source tasks. However, for these
source tasks, we do not reduce the difficultly of any states, as each
state only has 42 = 16 joint actions.

We design the optimal action in each source task to overlap with the
target task. For example, in Chainball-11-Def, we set the optimal
action in states 1,2,3, and 4 for agents 1 and 2 to be equal to the
optimal action for agents 1 and 2 in states 1,2,3, and 4 of the target
Chainball-11 task. Similarly, we set the optimal action for agents
1 and 2 in Chainball-11-Att in states 8,9,10,11 to be equal to the
optimal action for agents 3 and 4 of the Chainball-11 task. Outside of
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Figure 7: Chainball-5 Environment. Here states are re-labelled
with GK (goalkeeper), D (defence), M (midfield), and A (attack).
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Figure 8: Overcooked Sub-task Curriculum. In the target task,
agents must coordinate to pass and chop the tomato at the chop-
ping board (1,2), put the chopped tomato on a plate (3), and
pass the plate with chopped tomato back to serve at the starred
counter (4,5). The skills to complete steps 2 and 3 can be learned
in the “Right” source task; and skills to complete step 5 can be
learned in the “Left” source task. Steps 1 and 4 require learning
new behaviour in the target task.

these specified states, we require each agent to learn to take actions
different to those which were optimal in its source task.

Despite the simplicity of the chainball task, it is difficult to solve
due to the sparsity of reward and fact that in most states only one
out of 256 joint actions is optimal.

C.1.2 Expert Domain of Expertise Classifier. As discussed in
the previous section, we design the source task forward probability
tables such that we know the defenders (agents 1 and 2 in the full
task) are experts in states 1,2,3, and 4; and know that the attackers
(agents 3 and 4 in the full task) are experts in states 8,9,10, and 11.
This means we can specify ground-truth DoE classifiers:

�̂�1 (𝑠) = �̂�2 (𝑠) = 1[𝑠 ≤ 4] (defender DoE)

�̂�3 (𝑠) = �̂�4 (𝑠) = 1[𝑠 ≥ 8] (attacker DoE)

C.2 Overcooked
C.2.1 Environment Description. Overcooked is a complex en-
vironment which requires multi-step coordination by agents. The
goal of Overcooked is to complete a recipe by moving and process-
ing foods in a grid world. Figure 8 shows the configuration of our
Overcooked target task and sub-task curriculum.

The action space in overcooked has 7 actions: 4 cardinal movement
actions, a no-op action, and 2 interaction actions: one of which can
be used to pick up objects, or put them down on counters; and the
other which uses the chopping board when the tomato is placed on it.
The object interacted with depends on the orientation of each agent
(up/down/left/right).

We use an egocentric observation for each agent which has informa-
tion about:

• the ego agent’s current absolute location and absolute orienta-
tion,

• the other agent’s current relative location and absolute orienta-
tion,

• the relative location and chopped state of the tomato,

• the relative location of the plate,

• the relative location of the chopping board,

• the relative location of the starred delivery tile.

We define rewards such that the maximum attainable return in each
task is 1. In the full task, the team is rewarded with:

• +0.267 reward for chopping the tomato on the chopping board,

• +0.267 reward for putting chopped tomato on the plate,

• +0.476 reward for delivering the plate to the starred location.

In the “Right” source task, the team is rewarded with +1.0 reward
for delivering the plate to the starred location. In the “Left” source
task, the team is rewarded with +0.5 chopping the tomato, and +0.5
reward for placing the chopped tomato on the plate.

Overcooked terminates once all recipe steps have been completed,
or after 100 timesteps.

Figure 9 shows how we initialise the position of objects in Over-
cooked. In each scenario, we uniformly randomly choose a side of
the room to spawn the first agent in, placing that agent at the centre
of the chosen side; then we spawn the second agent in the centre of
the other side. The other objects are spawned uniformly randomly
in:

• the plate in one of the 3 counter positions on the bottom of the
left-hand half of the room,

• the starred service tile in one of the 3 counter positions on the
top of the right-hand half of the room,

• the chopping board in one of the 3 counter positions on the left
of the left-hand half of the room,

• (Right source task only): the tomato-on-plate on one of the 3
central counter positions,

• (Left source task only): the tomato on one of the 3 central counter
positions,

• (Target source task only): the tomato on one of the 3 counter
positions on the right of the right-hand half of the room.



Figure 9: Spawn locations for objects in overcooked. Objects are
labelled with “L” for “Left source task spawn position only”,
“R” for “Right source task spawn position only”, and “T” for
“Target task spawn position only”.

C.2.2 Expert Domain of Expertise Classifier. The DoE classi-
fier for Overcooked is based on the state and position of the tomato in
the task. For the agent in the left-hand half of the room, �̂�left (𝑠) = 1
iff:

• the tomato is in the left half (including centre counters), and

• the plate is in the left half (including centre counters), and

• the tomato is not on the plate.

For the agent in the left-hand half of the room, �̂�left (𝑠) = 1 if:

• the tomato is chopped, and

• the tomato is on the plate, and

• the tomato is in the right half (including centre counters).

D LEARNED DOE CLASSIFIER
In this section, we provide further details about the learned DoE
classifier used in our experiments.

Each agent’s DoE classifier is represented by a In both Chainball
and Overcooked, we use a fully-connected neural network with a
single hidden layer of 128 units with ReLU activation functions. We
use a learning rate of 1 × 10−2 with a batch size of 512, and train for
1 epoch. We minimise a binary cross-entropy loss function.

In Chainball, each agent stores 40,000 source task observations in
its experience buffer. We label each observation with its source task,
then concatenate and shuffle the experience buffer with an experience
buffer from the other source task. For example, if agent 𝑖 is trained
in the defence source task, and agent 𝑗 is trained in the attack source
task, then we form a dataset of labelled examples which looks like:{

⟨𝑜𝑖,734, def⟩, ⟨𝑜𝑖,233, def⟩, ⟨𝑜 𝑗,1729, att⟩, ⟨𝑜𝑖,333, def⟩, . . .
}
.

This dataset has 80,000 labelled examples. We reserve 10% of this
dataset as a test set, and train the network on the remaining 90%.

We follow a similar procedure for the Overcooked task, though in this
case each experience buffer stores 320,000 source task observations,
for a total dataset size of 640,000.

E SOURCE CODE
Source code and data for this paper are available via GitHub, at
https://github.com/uoe-agents/MEDoE.

https://github.com/uoe-agents/MEDoE
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