
Dynamic Adversarial Resource Allocation:
A Complete Characterization

Yue Guan
∗

Georgia Institute of Technology

Atlanta, United States

yguan44@gatech.edu

Daigo Shishika
∗

George Mason University

Fairfax, United States

dshishik@gmu.edu

Jason R. Marden

University of California Santa Barbara

Santa Barbara, United States

jrmarden@ece.ucsb.edu

Panagiotis Tsiotras

Georgia Institute of Technology

Atlanta, United States

tsiotras@gatech.edu

Vijay Kumar

University of Pennsylvania

Philadelphia, United States

kumar@seas.upenn.edu

Abstract
This work studies a dynamic and adversarial resource allocation

problem in a graph environment. A team of defender robots is

tasked with protecting the environment from a team of attacker

robots by ensuring the defender’s numerical advantage at every

node. The engagement is formulated as a discrete-time dynamic

game which is referred to as the dynamic Defender Attacker Blotto

(dDAB) game, where the two teams reallocate their robots in se-

quence and each robot can move at most one hop at each time step.

The game terminates with the attacker’s victory if any node has

more attacker robots than defender robots. Our goal is to identify

the necessary and sufficient number of defender robots to guarantee

guarding. Through a reachability analysis, we derive the necessary

and sufficient condition for a successful defense along with the

associated strategies. Crucially, our result indicates that there is

no incentive for the attacker team to split, which significantly re-

duces the search space for the attacker’s winning strategies and

also enables us to design defender counter-strategies using super-

position. We develop an efficient numerical algorithm to identify

the necessary and sufficient number of defender robots to defend a

given graph. Finally, we present illustrative examples to verify the

efficacy of the proposed framework.

Keywords
Multi-robot systems, Dynamic games, Resource allocation

ACM Reference Format:
Yue Guan

∗
, Daigo Shishika

∗
, Jason R. Marden, Panagiotis Tsiotras, and Vijay

Kumar. 2023. Dynamic Adversarial Resource Allocation: A Complete Char-

acterization. In MSDM Workshop of the 22nd International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2023), London, United
Kingdom, May 29 – June 2, 2023, IFAAMAS, 8 pages.

1 Introduction
Deploying resources (robots, sensors, or supplies) to appropriate

locations at the appropriate time is a fundamental problem in multi-

agent systems, often studied as the multi-robot task allocation

(MRTA) problem [5, 6]. In a real-world setting, resource allocation

MSDM Workshop of the 22nd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 –
June 2, 2023, London, United Kingdom. © 2023 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

1

65

3

42

9

8
7

Task location
Red team edge

Blue team edge
Red agents

Blue agents

Figure 1: The adversarial resource allocation problem.

or MRTA must be performed in a dynamically changing environ-

ment. Among other factors, time-varying demand is one of the

major sources of dynamics, exemplified by the research in wireless

network [11], ride-sharing [2], and power-grid [1].

In this work, we study the dynamic resource allocation problem

on a graph, where nodes represent physical locations and edges

represent the traversability between those locations. The focus is on

transporting the resources effectively in the environment to satisfy

demands that change dynamically. Instead of achieving the desired

allocation instantly, we require the robots to traverse through the

environment. Such consideration arises naturally when dealing

with embodied agents, such as robots or autonomous vehicles.

To stress the dynamic aspect of the problem, we consider de-

mands that are generated by an adversary. More specifically, we

formulate the problem as a dynamic (turn-based) game played be-

tween a blue team of defender robots and a red team of attacker

robots. The defender team must ensure numerical advantage at

every node the attacker robots are present. Whenever the attacker

team has more robots in any node, the attacker team wins the

game. In that sense, the demand imposed by the attacker team is a

hard constraint that the defender team must continuously satisfy

throughout the game. Many other safety-critical applications with

dynamic demands (e.g., resilient power grid [1]) can be formulated

as such hard-constrained resource allocation problems.

Our formulation also leads to feedback strategies that re-allocate

resources based on the system state (demands generated by the

attacker team and the current allocation of the defender team). The

re-allocation will be done with all possible next actions of the oppos-

ing team in mind. This is a major difference with many prior works

on resource allocation problems in the robotics community, where

the focus has been either on achieving a desired terminal allocation

that is fixed [3, 7], or on scheduling to satisfy a time-varying but

known demand (e.g., multiple traveling salesman problem) [5, 10].

Themain contributions of this work are: (i) formulation of a novel

resource allocation problem that has high relevance to security

applications; (ii) identification of the critical amount of resources

that are necessary and sufficient to guarantee successful defense;

(iii) derivation of the corresponding strategies that guarantee a

successful defense; and (iv) the development of efficient algorithms

to implement these strategies.

Due to space limitations, we only present proofs of certain the-

orems. The complete theoretical analysis will appear in a journal

version of this work.

2 Problem Formulation
The dynamic Defender-Attacker Blotto (dDAB) game is played be-

tween two players: the defender and the attacker. The environment

is represented as a directed graph G = (V, E), where the 𝑁 nodes

represent locations, and the directed edges represent the players’

traversability between those locations. To avoid degeneracy, we as-

sume that G is strongly connected [3], i.e., every node is reachable

from any other node. For notational simplicity, we assume that the

two players share the same graph, but the present analysis easily

extends to the case where the two players have different graphs.

A graph adjacency matrix 𝐴 ∈ R𝑁×𝑁 captures the traversability

of the resources as follows:

[𝐴]𝑖 𝑗 =
{

1 if an edge from 𝑗 to 𝑖 exists: (𝑗, 𝑖) ∈ E,
0 otherwise.

(1)

The out-degree of node 𝑖 is denoted as 𝑑𝑖 =
∑
𝑗 [𝐴] 𝑗𝑖 , and we denote

the out-neighbors of node 𝑖 as N𝑖 = { 𝑗 ∈ V|(𝑖, 𝑗) ∈ E}.
The total amount of resources for the defender and the attacker

are denoted by 𝑋 ∈ R>0 and 𝑌 ∈ R>0, respectively. The allocation
of the defender’s resources over the graph at time 𝑡 = 0, 1, . . . is

denoted by the state vector (allocation vector) x𝑡 ∈ R𝑁 , which lies

on a scaled simplex, such that [x𝑡]𝑖 ≥ 0 and

∑
𝑖 [x𝑡]𝑖 = 𝑋 for all

𝑡 = 0, 1, . . . ,𝑇 for some time horizon 𝑇 . The state vector (allocation

vector) y𝑡 ∈ R𝑁 for the attacker also satisfies the same conditions

with 𝑋 replaced by 𝑌 . We use Δ𝑋 and Δ𝑌 to denote the state space

of the defender and the attacker. Note that we consider continuous

resources (x𝑡 and y𝑡 are continuous variables).
The major difference from the original Colonel Blotto game is

that the dDAB game is played over multiple time steps, and that the

states evolve according to the following discrete-time dynamics:

x𝑡+1 = 𝐾𝑡x𝑡 and y𝑡+1 = 𝐹𝑡y𝑡 , (2)

where 𝐾𝑡 and 𝐹𝑡 represent the transition matrices for the defender
and the attacker, respectively. These matrices are left stochastic

(column sum is unity), and the entries can take nonzero values

only when the adjacency matrix has [𝐴]𝑖 𝑗 = 1. These matrices

represent the action / control executed by the players. For example,

an action 𝐾𝑡 of the defender is admissible if and only if it satisfies

the following linear constraints:∑︁
𝑖

[𝐾𝑡]𝑖 𝑗 = 1, ∀ 𝑖 ∈ V, (3)

[𝐾𝑡]𝑖 𝑗 ≥ 0, ∀ 𝑖, 𝑗 ∈ V, (4)

[𝐾𝑡]𝑖 𝑗 = 0, if 𝐴𝑖 𝑗 = 0. (5)

Defender Action

Attacker Action

Game Evaluation<latexit sha1_base64="vaOfA7yLIwpw4lSL8nzsNxjMZt4=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI8BQTwmYB6QLGF20puMmZ1dZmaFsAS8e/GgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaLSPJb3ZpygH9GB5CFn1FipbnrFklt2ZyCrxFuQEixQ6xW/uv2YpRFKwwTVuuO5ifEzqgxnAieFbqoxoWxEB9ixVNIItZ/NDp2QM6v0SRgrW9KQmfp7IqOR1uMosJ0RNUO97E3F/7xOasJrP+MySQ1KNl8UpoKYmEy/Jn2ukBkxtoQyxe2thA2poszYbAo2BG/55VXSvCh7l+VKvVKq3j7N48jDCZzCOXhwBVW4gxo0gAHCM7zCm/PgvDjvzse8NecsIjyGP3A+fwAKWo2F</latexit>

t
<latexit sha1_base64="uiR48eqcgrXbEwOnCpLHyaTvqOM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMgCGFXgnoMCOIxonlAsoTZyWwyZHZ2mekVwhLwB7x4UMSrX+TNv3HyOGhiQUNR1U13V5BIYdB1v53cyura+kZ+s7C1vbO7V9w/aJg41YzXWSxj3Qqo4VIoXkeBkrcSzWkUSN4MhtcTv/nItRGxesBRwv2I9pUIBaNopXs887rFklt2pyDLxJuTEsxR6xa/Or2YpRFXyCQ1pu25CfoZ1SiY5ONCJzU8oWxI+7xtqaIRN342PXVMTqzSI2GsbSkkU/X3REYjY0ZRYDsjigOz6E3E/7x2iuGVnwmVpMgVmy0KU0kwJpO/SU9ozlCOLKFMC3srYQOqKUObTsGG4C2+vEwa52Xvoly5q5SqN0+zOPJwBMdwCh5cQhVuoQZ1YNCHZ3iFN0c6L8678zFrzTnzCA/hD5zPH+CnjfU=</latexit>

t + 1
<latexit sha1_base64="SvEw9j+G6/nNSZebhlvQwRvlSiI=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlptsvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NnVBnOBE5LvVRjQtmYDrFrqaQRaj+bHzolZ1YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1ITXfsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2ZRsCN7yy6ukfVH1Lqu1Zq1Sv8njKMIJnMI5eHAFdbiDBrSAAcIzvMKb8+i8OO/Ox6K14OQzx/AHzucPfAeMvQ==</latexit>

0
<latexit sha1_base64="+oKLHyHLTb15dJ26CBcEdIL6bqA=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSRS1GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0cO71SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhtZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaV5UvMtK9b5art3kcRTgGE7gDDy4ghrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH+bQjPU=</latexit>�1

<latexit sha1_base64="LzLXJIsbwQXqE8WvYZPFrdIvnEo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69BIvgqSQi6rHgpccK9gPaUDabTbt0sxt2J0Ip/RFePCji1d/jzX/jps1BWx8MPN6bYWZemApu0PO+ndLG5tb2Tnm3srd/cHhUPT7pGJVpytpUCaV7ITFMcMnayFGwXqoZSULBuuHkPve7T0wbruQjTlMWJGQkecwpQSt1B+NIoakMqzWv7i3grhO/IDUo0BpWvwaRolnCJFJBjOn7XorBjGjkVLB5ZZAZlhI6ISPWt1SShJlgtjh37l5YJXJjpW1JdBfq74kZSYyZJqHtTAiOzaqXi/95/Qzju2DGZZohk3S5KM6Ei8rNf3cjrhlFMbWEUM3trS4dE00o2oTyEPzVl9dJ56ru39SvH65rjWYRRxnO4BwuwYdbaEATWtAGChN4hld4c1LnxXl3PpatJaeYOYU/cD5/APFPj1c=</latexit>. . .

Figure 2: Sequence of events of the dDAB game.

We denote the admissible set for the matrices 𝐾𝑡 as K , which de-

pends only on the underlying graph G, and is time-invariant. The

matrix 𝐹𝑡 for the attacker also satisfies similar constraints, and we

denote the set for all admissible matrices 𝐹𝑡 as F .
Similar to Colonel Blotto games [4, 8], the engagement at each

location is modeled solely based on the amount of resources. Specif-

ically, the defender successfully guards a location by allocating at

least as many resources as the attacker does, whereas the attacker

breaches a location by allocating more than what the defender does.

For the dDAB game, the defender wants to prevent the attacker

from breaching any location. Therefore, we define the terminal

condition as

∃ 𝑖 ∈ V, such that [y𝑡]𝑖 > [x𝑡]𝑖 , (6)

for some 𝑡 = 0, 1 . . . ,𝑇 . The defender wins the game if it can prevent

the attacker from winning if (6) for all 𝑡 = 0, 1, . . . ,𝑇 . If (6) holds for

all 𝑇 ≥ 0 then the defendercan prevent the attacker from winning

indefinitely.

For the information structure, we assume that the players make

decisions in sequence. Specifically, the defender acts first then the

attacker acts next: i.e., the attacker can select its action after observ-

ing how the defender allocated its resources. The game outcome is

evaluated after the attacker’s move. To avoid the degenerate sce-

nario where the attacker wins immediately in the first time step,

we only specify y−1 as the initial condition. The game starts with

the defender freely picking its distribution x0 after observing the
attacker’s initial state y−1. The timeline of the dDAB game is pre-

sented in Figure 2. In a realistic scenario, the two players make

simultaneous actions. Therefore, our problem formulation provides

a worst-case scenario for the defender.

An instance of dDAB game is defined by: (i) the available re-

sources 𝑋 and 𝑌 , and (ii) the underlying graph G. Given a graph,

our goal is to identify the necessary and sufficient number of re-

sources for the defender to win the game. To formalize the goal

above, we introduce the following multiplicative factor.

Definition 1 (Critical Resource Ratio). For a given (strongly-connected)
graph G and a time horizon 𝑇 , the CRR, 𝛼𝑇 ≥ 1, is the smallest posi-
tive number such that, if

𝑋 ≥ 𝛼𝑇𝑌, (7)

then the defender has a strategy to defend till time step𝑇 against any
admissible attacker strategy that starts at any initial state y−1 ∈ Δ𝑌 .
We use 𝛼∞ to denote the CRR that enables the defender to defend
indefinitely.

The two main questions we address in this work are:

Problem 1. Given a (strongly-connected) graph and a finite hori-
zon 𝑇 , what is the CRR 𝛼𝑇 ?

Problem 2. When 𝑋 ≥ 𝛼
𝑇
𝑌 , what is the corresponding defender

strategy that guarantees defense over𝑇 time steps? When the defender
does not have enough resources, what is the attacker strategy that
ensures breaching?

3 Reachable Sets and Required Sets

3.1 Reachable Sets
Since the dynamics of the two players are symmetric, we focus on

the analysis of the defender’s reachable sets and its action space

K . There are two major disadvantages working directly with the

action spaceK : (i) the higher dimensionality than the state space, i.e.

|E | ≫ |V|, and (ii) the nonuniqueness in the action that achieves

a transition from x𝑡 to x𝑡+1. To avoid these issues, we directly

consider the possible states that the defender can reach at the next

time step.

Definition 2 (Reachable set from a single point). The reachable
set from a single point x𝑡 , denoted as R(x𝑡), is the set of all states
that the defender can reach at the next time step with an admissible
action. Formally, the reachable set from x𝑡 is given by

R(x𝑡) = {x | ∃𝐾 ∈ K such that x = 𝐾x𝑡 }. (8)

Under the linear constraints in (3)–(5), the set of admissible

actions,K , is a bounded polytope in the |E |-dimensional space. We

use the extreme points (vertices) of this polytope to characterizeK .

Given the admissible action spaceK , we define the set of extreme
actions as

ˆK =
{
𝐾 ∈ K | [𝐾]𝑖 𝑗 ∈ {0, 1}

}
. (9)

In words,
ˆK contains all admissible actions 𝐾 whose entries are

either 0 or 1. The cardinality of
ˆK is given by

�� ˆK �� = ∏
𝑗 ∈V 𝑑 𝑗 , where

𝑑 𝑗 is the out-degree of node 𝑗 in the graph G. We use ℓ to index the

extreme actions in
ˆK , i.e. ˆK = {𝐾̂ (ℓ) } |

ˆK |
ℓ=1

. The following theorem

from our previous work [9] reveals the connection between the

extreme actions and the admissible action set.

Theorem 1. The extreme actions defined in (9) are the vertices of
the polytope K . Formally,

K = Conv

(
ˆK
)
. (10)

Consequently, for any admissible action 𝐾 ∈ K , there is a set of

non-negative coefficients 𝝀 = {𝜆 (ℓ) } |
ˆK |

ℓ=1
such that

∑ | ˆK |
ℓ=1

𝜆 (ℓ) = 1 and
such that

𝐾 =

| ˆK |∑︁
ℓ=1

𝜆 (ℓ) 𝐾̂ (ℓ) . (11)

The extreme action set for the attacker is denoted as
ˆF ; we use

{𝐹 (𝑟) } |
ˆF |

𝑟=1
to index its elements.

The reachable sets R(x𝑡) are, in fact, also polytopes in Δ𝑋 and

it can be viewed as a transformation performed on the action space

𝐾 . Formally, we have the following lemma [9].

Lemma 1. Given a point x𝑡 , the reachable set R(x𝑡) is a polytope
given by R(x𝑡) = Conv

(
{𝐾̂ (ℓ)x𝑡 } |

ˆK |
ℓ=1

)
.

Figure 3 presents an example of the reachable set for a three node

graph. For discrete resources (robots) as illustrated in Figure 3(a),

the defender is able to achieve any discrete state (black dots) that

are contained in the reachable set.

Using the same argument for the attacker, we can obtain the

polytope, R(y𝑡) with vertices w(𝑟)
𝑡+1 = 𝐹

(𝑟)y𝑡 for 𝑟 = 1, 2, ..., |𝐹 |.

1

2

3

0

2

4

6

8

0

10

2 4
6

108 86410 20(a) (b)

Node 1
Node 2

N
ode 3

Figure 3: Illustration of reachable set. (a) A directed graph
with three nodes, each with a self-loop (omitted for clarity).
(b) The defender’s reachable set and its vertices.

Since any state in R(x𝑡) can be reached at the next time step

from x𝑡 , we will view this polytope as the action space for the

defender at state x𝑡 . This definition of the action space resolves the

two issues raised at the beginning of this section: dimensionality

and nonuniqueness.

We further extend the definition of the reachable set of a single

point to the reachable set of a polytope (potentially unbounded).

The reachable set of a polytope will play a significant role in our

later analysis of the optimal strategies for both players.

Definition 3 (Reachable set from a polytope). Given a polytope
𝑃 ⊆ R𝑛≥0, the reachable set from this polytope, denoted as R(𝑃), is
the set of all states that the player can reach at the next time step
with an admissible action starting from a state within 𝑃 . Formally,
the reachable set from 𝑃 (for the defender) is given by

R(𝑃) = {x = 𝐾x𝑡 | 𝐾 ∈ K, x𝑡 ∈ 𝑃}. (12)

Lemma 2. Given a polytope 𝑃 , the reachable set R(𝑃) is a polytope.

3.2 Required Set
In this subsection, we identify the set of states (x𝑡 , y𝑡) that will
immediately lead to termination in the next time step: i.e., for any

defender action x𝑡+1 ∈ R(x𝑡), the attacker has an action y𝑡+1 ∈
R(y𝑡) to win the game by breaching at least one location at the

next time step as in (6).

For the defender to defend every location, it is necessary and

sufficient if the allocation vector, x, matches or outnumbers y at

every node 𝑖:

[x]𝑖 ≥ [y]𝑖 ∀𝑖 ∈ V . (13)

Since the attacker takes its action after observing the defender’s

action, the question is whether there exists x𝑡+1 ∈ R(x𝑡) such
that (13) is true for all y𝑡+1 ∈ R(y𝑡). This observation leads to the

following condition for guaranteed defense at 𝑡 + 1:
[x𝑡+1]𝑖 ≥ max

y𝑡+1∈R(y𝑡)
[y𝑡+1]𝑖 ∀𝑖 ∈ V . (14)

Since R(y𝑡) is a bounded polytope, for each node 𝑖 the optimization

maxy𝑡+1∈R(y𝑡) [y𝑡+1]𝑖 can be viewed as a linear program, whose

optimum is attained on one of the vertices of R(y𝑡). Consequently,
we define the minimum required resource at 𝑡 + 1 as xreq

𝑡+1, whose
elements are given by

[xreq
𝑡+1]𝑖 = max

𝑟

[
w(𝑟)
𝑡+1

]
𝑖
, (15)

where

{
w(𝑟)
𝑡+1

}
𝑟
=
{
𝐹 (𝑟)y𝑡

}
𝑟
are the vertices of R(y𝑡).

By allocating at least [xreq
𝑡+1]𝑖 to node 𝑖 , the defender ensures that

this node is defended against all feasible attacker actions at time

0

2

4

6

0

8

10

2
4

106 868 4210 0

0

2

4

6

0

8

10

2
4

106 868 4210 0

(a) (b)

Node 1 Node 2

N
ode 3

Node 1 Node 2

N
ode 3

Figure 4: Illustration of the required set Preq when y =

[1, 0, 2]⊤ and xreq = [3, 1, 2]⊤. (a) Intersection between Preq
and Δ𝑋 when 𝑋 = 10. (b) The case when 𝑋 = 6.

step 𝑡 + 1. If the defender allocates [x𝑡+1]𝑖 < [xreq
𝑡+1]𝑖 , then after

observing defender’s state (allocation), the attacker has a strategy

y𝑡+1 ∈ R(y𝑡) to win location 𝑖 . Thus, xreq
𝑡+1 is the necessary and

sufficient amount of resource for the defender to defend all locations

at time 𝑡 + 1, given the current attacker resource distribution y𝑡 .
Notice that 𝑋

req

𝑡+1 = 1⊤xreq
𝑡+1 depends on G and y𝑡 . It is easy to see

that the defender does not have a strategy to guarantee defense if

𝑋
req

𝑡+1 > 𝑋 .

On the other hand, if 𝑋
req

𝑡+1 ≤ 𝑋 , the defender can guarantee

defense by selecting any x𝑡+1 that is inside the polytope Preq (y𝑡),
which we call the required set defined as follows.

Definition 4. Given the attacker’s allocation y𝑡 at time 𝑡 , the re-
quired set for the defender at time 𝑡 + 1 is defined as:

Preq (y𝑡) ≜ {x𝑡+1 | [x𝑡+1]𝑖 ≥ [xreq𝑡+1 (y𝑡)]𝑖 , ∀ 𝑖 ∈ V}. (16)

When Preq is given, Figure 4 illustrates how the intersection

between Preq and the defender’s state space changes as a function

of defender’s resource 𝑋 .

4 No-Splitting Attacker
In this section, we will develop the tools to construct feedback

strategies for the defender and the attacker. We first focus on the

case where the attacker resources move as a single concentrated

group (a blob). In Section 5, we will generalize the results to scenar-

ios where the attacker splits its resource into multiple subgroups.

Note that throughout this paper, we do not restrict the defender’s

allocation strategies.

Let e𝑖 ∈ R𝑛 be the unit vector with its 𝑖-th element equal to one.

In the sequel, we will use the shorthand y(𝑖) = 𝑌e𝑖 to denote the

attacker allocation that is fully concentrated on node 𝑖 .

Definition 5 (No-splitting attacker strategy). A no-splitting at-
tacker strategy concentrates all attacker resources at one node at each
time 𝑡 . That is, for all 𝑡 , y𝑡 = y(𝑖𝑡) = 𝑌e𝑖𝑡 for some 𝑖𝑡 ∈ V .

4.1 K-step Safe Sets
To generate the defender strategy against no-splitting attacker

strategies, we define the following 𝑘-step safe set, later referred to

as the Q-set.

Definition 6 (𝑘-step safe set). We define Q (𝑖)
𝑘

= Q (𝑖)
𝑘
(G) to be the

region in R𝑛≥0 such that for a no-splitting attacker state y𝑡−1 = y(𝑖) ,

the defender’s state x𝑡 ∈ Q (𝑖)𝑘 is necessary and sufficient to defend
against any no-splitting attacker strategy until time step 𝑡 + 𝑘 .

Theorem 2. The following recursive expression provides the 𝑘-step
safe set:

Q (𝑖)
0

= Preq (y(𝑖)), (17a)

Q (𝑖)
𝑘

=

{
x
��x ∈ Preq (y(𝑖)) ∧ R(x) ∩ Q (𝑗)𝑘−1 ≠ ∅ ∀𝑗 ∈ N𝑖 },∀ 𝑘 ≥ 1.

(17b)

Proof. We break the proof into the following two lemmas, where

Lemma 3 is for sufficiency and Lemma 4 is for necessity. □

Lemma 3 (Sufficiency of Q-sets). Let the Q-sets defined in (17),
and suppose the attacker starts with y𝑡−1 = y(𝑖) . Then, by having
x𝑡 ∈ Q (𝑖)𝑘 , the defender can defend at least until time step 𝑡 + 𝑘 .

Proof. We do a proof by induction.

Base Case: When 𝑘 = 0, we have x𝑡 ∈ Q (𝑖)𝑡 = Preq (y(𝑖)). From
the construction of Preq (y(𝑖)), we know that for all y𝑡 ∈ R(y𝑡−1) =
R(y(𝑖)), we have x𝑡 ≥ y𝑡 componentwise. Thus, the defender can

guarantee defense at time 𝑡 .

Inductive hypothesis: Suppose that having x𝑡 ∈ Q (𝑖)𝑘 guarantees

defense until time 𝑡 + 𝑘 given y𝑡−1 = y(𝑖) .
Induction: Given y𝑡−1 = y(𝑖) , we let x𝑡 ∈ Q (𝑖)𝑘+1. Under the no-

splitting strategy, suppose that the attacker selects y𝑡 = y(𝑗) , for
some arbitrary 𝑗 ∈ N𝑖 . The attacker cannot immediately win with

this (or any other) action since the defender state x𝑡 ∈ Q (𝑖)𝑘+1 ⊆
Preq (y𝑡−1) guarantees defense at time step 𝑡 . After observing y𝑡 =
y(𝑗) , we let the defender select its next state so that x𝑡+1 ∈ R(x𝑡) ∩
Q (𝑗)
𝑘

. This new selection is reachable since x𝑡 ∈ Q (𝑖)𝑘+1 ensures that
R(x𝑡) ∩ Q (𝑗)𝑘 ≠ ∅ (from (17b)). After the defender’s action, we are

at a situation where y𝑡 = y(𝑗) and x𝑡+1 ∈ Q (𝑗)𝑘 . From the inductive

hypothesis, the defender can defend another 𝑘 steps from this time

on. The defender can thus defend until time step 𝑡 + 𝑘 + 1. □

Lemma 4 (Necessity of Q-sets). Let the Q-sets defined in (17), and
suppose the attacker starts with y𝑡−1 = y(𝑖) . If x𝑡 ∉ Q (𝑖)𝑘 , the attacker
can win the game before or at time step 𝑡 + 𝑘 .

Proof. The proof of this lemma is constructed through a similar

inductive argument and is thus omitted. □

Theorem 3. All Q-sets are polytopes.

The proof of Theorem 3 is delayed to Section 6, where we intro-

duce additional tools to efficiently construct the Q-sets.

4.2 Indefinite Defense
As the recursive definition of the Q-sets in (17) can be viewed as an

iterative algorithm, its fixed point(s) is therefore of great interest

to study.

Definition 7 (Indefinite Safe Set). We define the indefinite safe sets
Q (𝑖)∞ ⊆ Δ𝑋 as follows

Q (𝑖)∞ =
⋂
𝑘≥0
Q (𝑖)
𝑘
. (18)

The following theorem formalizes the natural conjecture that

indefinite safe sets guarantee an indefinite defense for the defender.

Theorem 4. If {Q (𝑖)∞ }𝑖∈V are nonempty, then x𝑡 ∈ Q (𝑖)∞ is the
necessary and sufficient condition for the indefinite defense given that
the attacker is at y𝑡−1 = y(𝑖) .

The conditions on the graph that guarantee convergence of the

iterative algorithm in (17) as well as the conditions for the existence

of such fixed point(s) is ongoing research.

4.3 Q-Set Propagation
The Q-set propagation process is described in Algorithm 1. The

iterative Q-set construction process stops if the Q-sets converge. In

this case, we can conclude that the defender can indefinitely defend

against all no-splitting attacker strategies.

Algorithm 1: Q-Prop
Inputs: Graph G, attacker total resource 𝑌 , max planning

horizon 𝐻max;

1 Set Q (𝑖)
0

= Preq (y(𝑖)) = Preq (𝑌e𝑖) for 𝑖 ∈ V and 𝑘∞ = ∞;
2 for 𝑘 = 1 to 𝐻max do
3 Construct Q (𝑖)

𝑘
using (17b) for all 𝑖 ∈ V;

4 if Q (𝑖)
𝑘

= Q (𝑖)
𝑘−1 for all 𝑖 ∈ V then

5 𝑘∞ = 𝑘 − 1;
6 Return: {Q (𝑖)

𝑘
}𝑘≤𝑘∞,𝑖∈V , 𝑘∞;

7 end
8 end
9 Return: {Q (𝑖)

𝑘
}𝑘≤𝐾,𝑖∈V , 𝑘∞

4.4 K-step Strategies
From the proof of Theorem 2, one already sees the strategies that

the defender and the attacker would deploy under the assumption

that the attacker starts on one node and does not split. The defender

utilizes Algorithm 2 to select its initial allocation, which maximizes

its guaranteed survival time given its total resource 𝑋 and the

observed attacker initial allocation y−1. For the rest of the game,

the defender uses Algorithm 3 as its feedback strategy.

Algorithm 2: Initial Defender Allocation (No Splitting)

Inputs: Graph G, defender total resource 𝑋 , attacker total
resource 𝑌 , attacker initial allocation y−1 = y(𝑖𝑡−1) ,
planning horizon 𝐻max;

1 Construct Q-sets via Algorithm 1:(
{Q (𝑖)

𝑘
}𝑘≤min{𝐻max,𝑘∞ },𝑖∈V , 𝑘∞

)
← Q-prop(G, 𝑌 , 𝐻max) ;

2 𝑘max,0 ←
argmax𝑘

{
𝑘 ≤ min{𝐻max, 𝑘∞}|Δ𝑋 ∩ Q (𝑖−1)𝑘

≠ ∅
}
;

3 x0 ← any element in Q (𝑖−1)
𝑘max,𝑡

4 Return: Q-sets {Q (𝑖)
𝑘
}𝑘≤min{𝐻max,𝑘∞ },𝑖∈V , initial allocation

x0, guaranteed survival time 𝑘max,0

The following two algorithms describe the attacker strategy un-

der the no-splitting restriction. In particular, Algorithm 4 presents

Algorithm 3: Feedback Defender Strategy (No Splitting)

Inputs: Q-sets, current time step 𝑡 ≥ 1, defender allocation

x𝑡 , observed attacker allocation y𝑡 = y(𝑖𝑡−1) ,
planning horizon 𝐻max;

1 𝑘max,𝑡 ←
argmax𝑘

{
𝑘 ≤ min{𝐻max, 𝑘∞}|R(x𝑡) ∩ Q (𝑖𝑡−1)𝑘

≠ ∅
}
;

x𝑡 ← any element in Q (𝑖𝑡−1)
𝑘max,𝑡

;

2 Return: Next allocation x𝑡 , guaranteed survival time 𝑘max,𝑡

the initial allocation for the attacker, and Algorithm 5 provides the

feedback attacker strategy at time steps 𝑡 ≥ 1. As we will show

in the next section, the attacker has no incentive to split, i.e., if

the attacker can win a dDAB game by splitting, it can also win the

game without splitting. Consequently, the algorithms presented

here are enough for the attacker.

Algorithm 4: Attacker Initial Allocation
Inputs: Graph G, defender total resource 𝑋 , attacker total

resource 𝑌 , planning horizon 𝐻max;

1 Construct Q-sets:(
{Q (𝑖)

𝑘
}𝑘≤min{𝐻max,𝑘∞ },𝑖∈V , 𝑘∞

)
← Q-prop(G, 𝑌 , 𝐻max) ;

2 if ∃𝑘 ≤ min{𝐻max, 𝑘∞} and 𝑖 ∈ V such that Δ𝑋 ∩ Q (𝑖)𝑘 = ∅
then

3 𝑘min,−1 ←
argmin𝑘

{
𝑘 ≤ min{𝐻max, 𝑘∞} | Δ𝑋 ∩ Q (𝑖)𝑘 = ∅

}
;

𝑖∗−1 ← any element in {𝑖 | Δ𝑋 ∩ Q (𝑖)𝑘min,−1
= ∅ };

4 else
5 𝑘min,−1 ←∞;
6 𝑖∗−1 ← any element in node setV;

7 end
8 Return: Q-sets {Q (𝑖)

𝑘
}𝑘≤min{𝐻max,𝑘∞ },𝑖∈V , initial allocation

y−1 = y(𝑖
∗
−1) , guaranteed breach time 𝑘min,−1.

Algorithm 5: Feedback Attacker Strategy

Inputs: Q-sets, current time step 𝑡 , observed defender

allocation x𝑡 , planning horizon 𝐻max;

1 if ∃𝑘 ≤ min{𝐻max, 𝑘∞} and 𝑖 ∈ V such that x𝑡 ∉ Q (𝑖)𝑘 then
2 𝑘min,𝑡 ←

argmin𝑘

{
𝑘 ≤ min{𝐻max, 𝑘∞} | x𝑡 ∉ Q (𝑖)𝑘 , 𝑖 ∈ V

}
;

𝑖∗𝑡 ← any element in {𝑖 | x𝑡 ∉ Q (𝑖)𝑘min,𝑡
};

3 else
4 𝑘min,𝑡 ←∞;
5 𝑖∗𝑡 ← any element in N𝑖𝑡−1 ;
6 end
7 Return: Next allocation y𝑡 = y(𝑖

∗
𝑡) , guaranteed breach time

𝑘min,𝑡 .

5 Main Results

5.1 Generalization to Splitting Attacker
To extend the analysis on no-splitting strategies to the case with

general strategies, we introduce the notion of subteams.

Definition 8 (Attacker Subteam). We refer to the attacker resource
allocated to each node as an attacker subteam. The size of the 𝑖-th
attacker subteam (on node 𝑖) at time 𝑡 is simply [y𝑡]𝑖 .

In general, any attacker action can be viewed as a superposition

of the subteam actions, which results in the splitting and merging

of subteams into a new set of subteams.

We define the defender subteam as the subset of defender re-

source that can be deployed to defend against an attacker subteam.

Definition 9 (Defender Subteam). The 𝑖-th defender subteam is
defined based on the condition that it can guard against the 𝑖-th
attacker subteam until some terminal time 𝑇 :1

x(𝑖)
𝑡,𝑇
≜
[y𝑡−1]𝑖
𝑌

x̂(𝑖)𝑡 , where x̂(𝑖)𝑡 ∈ Q
(𝑖)
𝑇−𝑡 . (19)

The first subscript, 𝑡 , tracks the current time step, and the second
subscript, 𝑇 , tracks the expected terminal time.

Note that the Q-set in (17) is defined based on the full attacker

team size 𝑌 , and x̂ is used to denote an element of the original

Q-sets. On the other hand, a defender subteam is its scaled version

according to the size of the corresponding attacker subteam.

1

2 3

1

2 3

1

2 3

(a) (b) (c)

Figure 5: Splitting of an attacker subteam and the response of
the corresponding defender subteam. Self-loops are omitted.

Figure 5(a) presents the initial state with a valid defender subteam

placed against an attacker subteam at node 2. In Figure 5(b), the

attacker resource splits into two: magenta with size 1 and red with

size 2. Based on the observed attacker action, the original defender

subteam also splits into two: cyan and blue which reacts against

magenta and red, respectively. Figure 5(c) shows the reaction of

each defender subteams (cyan and blue) against the corresponding

attacker subteams.

We first present the main result of this section and provide the

supporting lemmas later on.

Theorem 5. Suppose that for a given terminal time 𝑇 , and for some
𝑡 ∈ {0, 1, ...,𝑇 }, the defender state can be described as a superposition
of the subteams:2

x𝑡 =
𝑛∑︁
𝑖

x(𝑖)
𝑡,𝑇
. (20)

1
For now, this condition only tells us that the defense will be guaranteed if the attacker

subteam does not split further.

2
This condition is implicitly dependent on y𝑡−1 through the definition of the subteams

in (19).

Then, the defender has a strategy to guarantee defense until time step
𝑇 against any admissible attacker strategy.

Proof. We break the proof into three steps. Step I: In Lemma 5,

we show that (20) is a sufficient condition for the defender to de-

fend the current time step. Step II: Lemma 6 provides a strategy to

maintain condition (20) at the next time step against any admissible

attacker strategy. In other words, for 𝑡 ∈ {0, . . . ,𝑇 − 1}, if x𝑡 sat-
isfies (20) for a given y𝑡−1, then for any y𝑡 ∈ R(y𝑡−1), there is an
admissible action 𝐾𝑡 such that x𝑡+1 = 𝐾𝑡x𝑡 satisfies the condition
in (20) at 𝑡 +1. Step III: Based on mathematical induction, condition

in (20) is satisfied for all time steps. Therefore, the defense will be

guaranteed until time step 𝑇 . □

Lemma 5 (Safeness). If the defender state satisfies (20) for some
𝑡 ∈ {0, 1, ...,𝑇 }, then x𝑡 is in the required set of y𝑡−1:

x𝑡 =
𝑛∑︁
𝑖

x(𝑖)
𝑡,𝑇

⇒ x𝑡 ∈ Preq (y𝑡−1) . (21)

Proof. The proof is omitted due to page length limitations. □

Lemma 6 (Inductive condition). Suppose the defender’s state at
time 𝑡 satisfies

x𝑡 =
𝑛∑︁
𝑖

x(𝑖)
𝑡,𝑇
. (22)

Then, for any attacker action y𝑡 ∈ R(y𝑡−1), there exists a defender’s
reaction x𝑡+1 ∈ R(x𝑡) such that

x𝑡+1 =
𝑛∑︁
𝑖

x(𝑖)
𝑡+1,𝑇 , (23)

that is, the defender’s state at the next time step can also be written
as a combination of valid subteams defined in (19).

Proof. Denote the attacker’s overall action that takes y𝑡−1 to
y𝑡 as 𝐹𝑡−1. Then, this overall action 𝐹𝑡 can be described as a com-

bination of subteam actions as follows. Let 𝒇𝑖 be the 𝑖-th column

of 𝐹𝑡−1, i.e., 𝐹𝑡−1 = [𝒇1,𝒇2, ...,𝒇𝑛], where 𝒇⊤𝑖 1 = 1 (since 𝐹𝑡−1 is left
stochastic). We can interpret 𝒇𝑖 to be the action of attacker subteam

on node 𝑖 at time 𝑡 − 1. More specifically, the fraction of a (possibly

empty) subteam on node 𝑖 relocating to node 𝑗 is given by [𝒇𝑖] 𝑗 .
For notational convenience, we drop the second subscript, 𝑇 ,

when denoting the defender subteams, x(𝑖)
𝑡+1,𝑇 . The defender sub-

team x(𝑖)𝑡 = 1

𝑌
[y𝑡−1]𝑖 x̂(𝑖)𝑡 , where x̂(𝑖)𝑡 ∈ Q (𝑖)

𝑇−𝑡 , has the following
strategy to react against the given splitting 𝒇𝑖 :

𝐾 (𝑖) =
∑︁
𝑗

[𝒇𝑖] 𝑗𝐾 (𝑖→𝑗) , (24)

where the action 𝐾 (𝑖→𝑗)
corresponds to a satisficing defender ac-

tion against a no-splitting attacker moving from node 𝑖 to 𝑗 , which

provides x̂(𝑖→𝑗)
𝑡+1 = 𝐾 (𝑖→𝑗) x̂(𝑖)𝑡 ∈ Q

(𝑗)
𝑇−𝑡−1 .

Note that the subteam action 𝐾 (𝑖) can be interpreted as follows.

First, the 𝑖-th defender subteam is divided into sub-subteams, ac-

cording to the 𝑖-th attacker subteam’s splitting action 𝒇𝑖 from the

previous time step (see Figure 5). The 𝑗-th defender “sub-subteam”

of its 𝑖-th subteam then counteracts the 𝑗-th attacker sub-subteam

that moves from node 𝑖 to node 𝑗 . This counteraction is achieved

by the defender sub-subteam applying the action 𝐾 (𝑖→𝑗)
. The next

state achieved by the this defender sub-subteam is then given by

x(𝑖→𝑗)
𝑡+1 =

[𝒇𝑖] 𝑗 [y𝑡−1]𝑖
𝑌

𝐾 (𝑖→𝑗) x̂(𝑖→𝑗)
𝑡 =

[𝒇𝑖] 𝑗 [y𝑡−1]𝑖
𝑌

x̂(𝑖→𝑗)
𝑡+1 .

Note that x(𝑖→𝑗)
𝑡+1 is only a part of the new 𝑗-th defender subteam,

which originated from the previous 𝑖-th subteam. By collecting

all defender resources from different subteams that reacted to the

attacker resources that ended up at node 𝑗 (i.e., the new 𝑗-th attacker

subteam), the new 𝑗-th defender subteam can be computed as

x(𝑗)
𝑡+1 =

∑︁
𝑖

x(𝑖→𝑗)
𝑡+1 =

∑︁
𝑖

[𝒇𝑖] 𝑗 [y𝑡−1]𝑖
𝑌

x̂(𝑖→𝑗)
𝑡+1 . (25)

We now verify that this is a valid defender subteam, i.e., it can defend

against [y𝑡] 𝑗e𝑗 over the next 𝑇 − 𝑡 − 1 time steps. By definition

(19), the rescaled new 𝑗-th subteam is

x̂(𝑗)
𝑡+1 =

𝑌

[y𝑡] 𝑗
x(𝑗)
𝑡+1 =

∑︁
𝑖

[𝒇𝑖] 𝑗 [y𝑡−1]𝑖
[y𝑡] 𝑗

x̂(𝑖→𝑗)
𝑡+1 . (26)

Noting that

∑
𝑖 [𝒇𝑖] 𝑗 [y𝑡−1]𝑖 = [y𝑡] 𝑗 , we see that x̂

(𝑗)
𝑡+1 is a convex

combination of the states {x̂(𝑖→𝑗)
𝑡+1 }𝑖 . Since Q-sets are polytopes (see

Theorem 3) and x̂(𝑖→𝑗)
𝑡+1 ∈ Q (𝑗)

𝑘−1 for all 𝑖 ∈ V , we can conclude that

x̂(𝑗)
𝑡+1 ∈ Q

(𝑗)
𝑘−1. □

Corollary 1 (No Incentive to Split). For a given graph G and re-
sources 𝑋 and 𝑌 , the attacker has a strategy to win the dDAB game if
and only if it has a no-splitting winning strategy.

Following the proof of Theorem 5, one can easily generalize the

defender strategy in Section 4 to the scenarios where the attacker

splits its resource over multiple nodes. The construction of the

strategy is omitted due to space limit.

6 Algorithmic Solution
In this section, we first develop an algorithm to numerically con-

struct theQ-sets. Recall the recursive definition of theQ-sets in (17b):

Q (𝑖)
𝑘

=

{
x
�� x ∈ Preq (y(𝑖)) ∧ R(x) ∩ Q (𝑗)𝑘−1 ≠ ∅ ∀𝑗 ∈ N𝑖 } .

We refer to the set {x|R(x) ∩ Q (𝑗)
𝑘

≠ ∅} as the inverse reachable
set, which consists of states from which the defender can reach

Q (𝑗)
𝑘

in the next time step. Formally,

Definition 10 (Inverse Reachable Set). Given a set 𝑃 ⊆ R𝑁≥0, we
define the inverse reachable set of 𝑃 as

R−1 (𝑃) =
{
x
�� R(x) ∩ 𝑃 ≠ ∅

}
. (27)

With the notion of the inverse reachable set, we can simplify the

recursive construction of Q-sets in (17) as

Q (𝑖)
𝑘

=
©­«
⋂
𝑗 ∈N𝑖

R−1 (Q (𝑗)
𝑘−1)

ª®¬ ∩ Preq (y(𝑖)), ∀ 𝑘 ≥ 1. (28a)

To construct the reverse reachable sets, we introduce the notion

of a reversed graph, which has the same node set as the original

graph but with all the edges reversed.

Definition 11. Let a graph G = (V, E) with connectivity matrix 𝐴.
The reversed graph G̃ = (V, Ẽ) has the connectivity matrix 𝐴 such
that 𝐴 = 𝐴⊤.

We denote K̃ as the admissible action set of G̃. The reachable
set for the reversed graph is then defined as

R̃ (x) =
{
x′ | ∃𝐾 ∈ K̃ such that x′ = 𝐾x

}
.

Lemma 7. For any graph G, we have

R−1 (𝑃) = R̃ (𝑃) for all 𝑃 ⊆ R𝑁≥0 .

Recall that reachable set of a polytope is also a polytope. With

the equivalent Q-set definition in (28), one can easily show through

an inductive argument that all Q-sets are polytopes, which is the

statement of Theorem 3. Furthermore, the above result enables

to efficiently propagate the Q-sets using the reachable sets of the

reversed graph.

7 Numerical Illustrations
This section provides numerical examples that illustrate the theo-

rems and algorithms developed in the previous sections.

7.1 Q-set Propagation

Figure 6 illustrates how the Q-sets,Q (𝑖)
𝑘

, changes with the horizon𝑘 .

For the three-node graph selected for this example, the propagation

in Algorithm 1 converges after four time steps, at which point the

algorithm finds that 𝑘∞ = 4. The CRR for this graph is 𝛼∞ = 3.

42

0

2

0

4

2
4

0

42

0

2

0

4

2
4

0

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

3

2

1
42

0

2

0

4

2
4

0

42

0

2

0

4

2
4

0

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

4

0

2

0

4

2
4 20

<latexit sha1_base64="i/FHcqe5x7P9PVhhMsKovECSRV4=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuWdRjwYvHFuyHtGvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2POtHHdbye3sbm1vZPfLeztHxweFY9PWjpKFKFNEvFIdUKsKWeSNg0znHZiRbEIOW2Hk9u5336iSrNI3ptpTAOBR5INGcHGSg+Nvv+YlquXs36x5FbcBdA68TJSggz1fvGrN4hIIqg0hGOtu54bmyDFyjDC6azQSzSNMZngEe1aKrGgOkgXB8/QhVUGaBgpW9Kghfp7IsVC66kIbafAZqxXvbn4n9dNzPAmSJmME0MlWS4aJhyZCM2/RwOmKDF8agkmitlbERljhYmxGRVsCN7qy+ukVa14VxW/4ZdqfhZHHs7gHMrgwTXU4A7q0AQCAp7hFd4c5bw4787HsjXnZDOn8AfO5w+ISI+M</latexit>

Q
(2)
4

<latexit sha1_base64="ZSQtxZorIelYJ8HzNHyHYr+o8+8=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSLUS9mVRT0WvHhswX5Iu5Zsmm1Dk+ySZIWy9Fd48aCIV3+ON/+NabsHbX0w8Hhvhpl5YcKZNq777aytb2xubRd2irt7+weHpaPjlo5TRWiTxDxWnRBrypmkTcMMp51EUSxCTtvh+Hbmt5+o0iyW92aS0EDgoWQRI9hY6aHR9x+zincx7ZfKbtWdA60SLydlyFHvl756g5ikgkpDONa667mJCTKsDCOcTou9VNMEkzEe0q6lEguqg2x+8BSdW2WAoljZkgbN1d8TGRZaT0RoOwU2I73szcT/vG5qopsgYzJJDZVksShKOTIxmn2PBkxRYvjEEkwUs7ciMsIKE2MzKtoQvOWXV0nrsupdVf2GX675eRwFOIUzqIAH11CDO6hDEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwCGwo+L</latexit>

Q
(1)
4

<latexit sha1_base64="IIMevqgWC4TDbmE1dxoUXsU6xdY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx4MVjC/ZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek9u533miSrNI3ptpTH2BR5KFjGBjpYfmoPqYlr3L2aBYcivuAmideBkpQYbGoPjVH0YkEVQawrHWPc+NjZ9iZRjhdFboJ5rGmEzwiPYslVhQ7aeLg2fowipDFEbKljRoof6eSLHQeioC2ymwGetVby7+5/USE974KZNxYqgky0VhwpGJ0Px7NGSKEsOnlmCimL0VkTFWmBibUcGG4K2+vE7a1Yp3Vak1a6V6LYsjD2dwDmXw4BrqcAcNaAEBAc/wCm+Ocl6cd+dj2ZpzsplT+APn8weDro+J</latexit>

Q
(1)
2

<latexit sha1_base64="EOCIWhghM/NAwC26qbD7IJQHW5g=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXsqulOqx4MVjC/ZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek9u533miSrNI3ptpTH2BR5KFjGBjpYfmwH1My97lbFAsuRV3AbROvIyUIENjUPzqDyOSCCoN4VjrnufGxk+xMoxwOiv0E01jTCZ4RHuWSiyo9tPFwTN0YZUhCiNlSxq0UH9PpFhoPRWB7RTYjPWqNxf/83qJCW/8lMk4MVSS5aIw4chEaP49GjJFieFTSzBRzN6KyBgrTIzNqGBD8FZfXiftq4pXq1Sb1VK9msWRhzM4hzJ4cA11uIMGtICAgGd4hTdHOS/Ou/OxbM052cwp/IHz+QOAmo+H</latexit>

Q
(1)
0

<latexit sha1_base64="nrMKvqvXTjrQWpolNISS+d+bx50=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx4MVjC/ZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek9u533miSrNI3ptpTH2BR5KFjGBjpYfmwH1My9XL2aBYcivuAmideBkpQYbGoPjVH0YkEVQawrHWPc+NjZ9iZRjhdFboJ5rGmEzwiPYslVhQ7aeLg2fowipDFEbKljRoof6eSLHQeioC2ymwGetVby7+5/USE974KZNxYqgky0VhwpGJ0Px7NGSKEsOnlmCimL0VkTFWmBibUcGG4K2+vE7a1Yp3Vak1a6V6LYsjD2dwDmXw4BrqcAcNaAEBAc/wCm+Ocl6cd+dj2ZpzsplT+APn8weCII+I</latexit>

Q
(2)
0

<latexit sha1_base64="geXWHNNZTmeLtV5ErVsikZHs81k=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx4MVjC/ZD2rVk02wbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3sbm1vZPfLeztHxweFY9P2jpKFKEtEvFIdQOsKWeStgwznHZjRbEIOO0Ek9u533miSrNI3ptpTH2BR5KFjGBjpYfmoPqYlquXs0Gx5FbcBdA68TJSggyNQfGrP4xIIqg0hGOte54bGz/FyjDC6azQTzSNMZngEe1ZKrGg2k8XB8/QhVWGKIyULWnQQv09kWKh9VQEtlNgM9ar3lz8z+slJrzxUybjxFBJlovChCMTofn3aMgUJYZPLcFEMXsrImOsMDE2o4INwVt9eZ20qxXvqlJr1kr1WhZHHs7gHMrgwTXU4Q4a0AICAp7hFd4c5bw4787HsjXnZDOn8AfO5w+FNI+K</latexit>

Q
(2)
2

Figure 6: Examples of the Q-set propagation.

7.2 Effect of Edges on CRR
The relationship between the CRR and the graph structure is not

straightforward. One might, for example, expect a positive correla-

tion between the number of edges and the CRR, since an increase in

the number of outgoing edges from a node increases the number of

neighboring nodes that must be covered by the defender. However,

we show by a counter-example (found by the algorithm) that this

is not the case.

Figure 7 provides directed graphs with five nodes. The corre-

sponding CRR 𝛼∞ for each graph is obtained using Algorithm 1.

In the simplest case of the ring graph, the defender only needs the

same amount of resources as the attacker to guarantee indefinite

defense, which matches the results in [9]. Interestingly, by adding

only one directed edge connecting node 3 and node 4 to the graph,

1

32

4

5

1

32

4

5

1

32

4

5

<latexit sha1_base64="lpEkYp72fVJ+O3Au+adEDs/v5gk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1INCwYvHCvZD2lAm2027dLMJuxuhhP4KLx4U8erP8ea/cdvmoK0PBh7vzTAzL0gE18Z1v53Cyura+kZxs7S1vbO7V94/aOo4VZQ1aCxi1Q5QM8ElaxhuBGsnimEUCNYKRrdTv/XElOaxfDDjhPkRDiQPOUVjpccuimSIN8TrlStu1Z2BLBMvJxXIUe+Vv7r9mKYRk4YK1LrjuYnxM1SGU8EmpW6qWYJ0hAPWsVRixLSfzQ6ekBOr9EkYK1vSkJn6eyLDSOtxFNjOCM1QL3pT8T+vk5rwys+4TFLDJJ0vClNBTEym35M+V4waMbYEqeL2VkKHqJAam1HJhuAtvrxMmmdV76J6fn9eqV3ncRThCI7hFDy4hBrcQR0aQCGCZ3iFN0c5L8678zFvLTj5zCH8gfP5A9p4j8c=</latexit>

↵ = 1
<latexit sha1_base64="UQ1HSqxw3wc7CpShat3baYvZSUU=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKexKfBwUAl48RjAPSZbQO5kkQ2Z2l5lZISz5Ci8eFPHq53jzb5wke9DEgoaiqpvuriAWXBvX/XZyK6tr6xv5zcLW9s7uXnH/oKGjRFFWp5GIVCtAzQQPWd1wI1grVgxlIFgzGN1O/eYTU5pH4YMZx8yXOAh5n1M0VnrsoIiHeEPOu8WSW3ZnIMvEy0gJMtS6xa9OL6KJZKGhArVue25s/BSV4VSwSaGTaBYjHeGAtS0NUTLtp7ODJ+TEKj3Sj5St0JCZ+nsiRan1WAa2U6IZ6kVvKv7ntRPTv/JTHsaJYSGdL+ongpiITL8nPa4YNWJsCVLF7a2EDlEhNTajgg3BW3x5mTTOyt5FuXJfKVWvszjycATHcAoeXEIV7qAGdaAg4Rle4c1Rzovz7nzMW3NONnMIf+B8/gDgiI/L</latexit>

↵ = 5
<latexit sha1_base64="Ty5A8g2ibpQ+RaNGVEQW0USbhqs=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKexKMB4UAl48RjAPSZbQO5lNhszsLjOzQgj5Ci8eFPHq53jzb5wke9DEgoaiqpvuriARXBvX/XZya+sbm1v57cLO7t7+QfHwqKnjVFHWoLGIVTtAzQSPWMNwI1g7UQxlIFgrGN3O/NYTU5rH0YMZJ8yXOIh4yCkaKz12USRDvCHVXrHklt05yCrxMlKCDPVe8avbj2kqWWSoQK07npsYf4LKcCrYtNBNNUuQjnDAOpZGKJn2J/ODp+TMKn0SxspWZMhc/T0xQan1WAa2U6IZ6mVvJv7ndVITXvkTHiWpYRFdLApTQUxMZt+TPleMGjG2BKni9lZCh6iQGptRwYbgLb+8SpoXZe+yXLmvlGrXWRx5OIFTOAcPqlCDO6hDAyhIeIZXeHOU8+K8Ox+L1pyTzRzDHzifP+OQj80=</latexit>

↵ = 7

1

32

4

5

<latexit sha1_base64="/q2PDy27HW7s1507tJk3cEB5zKM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKexqiF6EgBePEcwDkiX0TmaTIbOz68ysEEJ+wosHRbz6O978GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VZQ1aCxi1Q5QM8ElaxhuBGsnimEUCNYKRrczv/XElOaxfDDjhPkRDiQPOUVjpXYXRTLEm8teseSW3TnIKvEyUoIM9V7xq9uPaRoxaahArTuemxh/gspwKti00E01S5COcMA6lkqMmPYn83un5MwqfRLGypY0ZK7+nphgpPU4CmxnhGaol72Z+J/XSU147U+4TFLDJF0sClNBTExmz5M+V4waMbYEqeL2VkKHqJAaG1HBhuAtv7xKmhdlr1qu3FdKtWoWRx5O4BTOwYMrqMEd1KEBFAQ8wyu8OY/Oi/PufCxac042cwx/4Hz+AIOBj5k=</latexit>

↵ = 3

Figure 7: Examples of CRR under different graph structures.

the CRR changes drastically to 𝛼∞ = 5. By further adding a self-loop

on node 4, the CRR goes up to seven. Notably, this is greater than

the number of nodes on this graph. However, if we add a self-loop

to node 3 instead of node 4, the CRR 𝛼∞ decreases from 5 to 3,

which implies that additional edges may benefit the defender as

well.

7.3 Non-integer Resource Ratio
A natural conjecture regarding the CRR is that it is always integer-

valued. Through the following dDAB game over a six-node graph

in Figure 8, we show that it is possible that the resource ratio is a

fraction for finite-horizon dDAB games. One can verify that three

units of defender resources is not enough for a two-step defense.

However, we will demonstrate that three and a half units is enough.

A game tree is presented in Figure 8 and different blue colors are

introduced only to better visualize the splitting and regrouping of

the defender resources. It is easy to verify that the initial defender

state is in the Preq. Now, the attacker has three feasible moves to

make at time step 0: move to node 2, move to node 5 or stay at node

3. We only present the first twomoves in Figure 8, since for the third

move, the defender can just maintain its current state as a counter-

measure and does not lose any survival time. Furthermore, we will

focus on explaining the move to node 2 due to space limitations.

After observing that the attacker moves to node 2, the defender

takes action (a)
3
. The attacker then has two options, either move

to node 5 or to node 6. Suppose the attacker moves to node 6, the

defender initiates action (b)
4
, which ensures that the configuration

at the beginning of time step 2 is still in the required set. Similar

moves can be made for trajectory (ii) to ensure the defense till the

end of time step 2.

Through splitting and re-grouping its resources, the defender

achieves defense with only an additional half unit of resource. The

strategy presented is found by the algorithms introduced in Sec-

tion 4, which verifies the efficacy of the proposed approach.

8 Conclusion
In this work, we formulated a dynamic adversarial resource-allocation

problem by extending the Colonel Blotto game with ideas from

population dynamics on graphs. Instead of achieving a desired allo-

cation instantly, we require the resources of each player to traverse

through the edges of the graph. An efficient reachable-set approach

is developed to predict the evolution of the player’s states. We pro-

vide a full characterization of the game by deriving the necessary

and sufficient condition (the Q-sets) for either of the player to win

3
Action (a) splits defender resources so that the one unit of defender on node 2 moves

to node 6; half unit on node 3 moves to node 2 and the other half stays on node 3; the

half unit on node 6 moves to node 1, and finally the one unit on node 5 stays.

4
Action (b) moves the half unit on node 1 to node 5; the half unit on node 2 to node 5,

the one unit on node 6 to node 1, and the rest of the resources on nodes 3 and 5 stay.

1

3

5

2

4

6

<latexit sha1_base64="4mSRiAOC1HPbUsbyd7QN48TyFAA=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsN+3azSbsToQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEY3878hyeujYjVPU4S7kd0qEQoGEUrNbFfrrhVdw6ySrycVCBHo1/+6g1ilkZcIZPUmK7nJuhnVKNgkk9LvdTwhLIxHfKupYpG3PjZ/NApObPKgISxtqWQzNXfExmNjJlEge2MKI7MsjcT//O6KYbXfiZUkiJXbLEoTCXBmMy+JgOhOUM5sYQyLeythI2opgxtNiUbgrf88ippX1S9y2qtWavUb/I4inACp3AOHlxBHe6gAS1gwOEZXuHNeXRenHfnY9FacPKZY/gD5/MH4xeNAQ==</latexit>

t
0 1 2

(ii)

(i)

(iii)

(iv)

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

1

3

5

2

4

6

(a)

(b)

(c)

Figure 8: A two-time step game tree starting with one unit of
attacker and three and a half unit of defender.

the game and the associated strategies to achieve that. The efficacy

of the proposed approach is verified through numerical simulations.

References
[1] Aditya Ashok, Manimaran Govindarasu, and Jianhui Wang. 2017. Cyber-physical

attack-resilient wide-area monitoring, protection, and control for the power grid.

Proc. IEEE 105, 7 (2017), 1389–1407.

[2] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for trip-vehicle assignment

in ride-sharing. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

[3] Spring Berman, Adám Halász, M Ani Hsieh, and Vijay Kumar. 2009. Optimized

stochastic policies for task allocation in swarms of robots. IEEE Transactions on
Robotics 25, 4 (2009), 927–937.

[4] Oliver Gross and Robert Wagner. 1950. A Continuous Colonel Blotto Game. Tech-
nical Report. RAND Corporation.

[5] Alaa Khamis, Ahmed Hussein, and Ahmed Elmogy. 2015. Multi-robot task allo-

cation: A review of the state-of-the-art. Cooperative Robots and Sensor Networks
2015 (2015), 31–51.

[6] G Ayorkor Korsah, Anthony Stentz, and M Bernardine Dias. 2013. A compre-

hensive taxonomy for multi-robot task allocation. The International Journal of
Robotics Research 32, 12 (2013), 1495–1512.

[7] Amanda Prorok, M Ani Hsieh, and Vijay Kumar. 2017. The impact of diversity

on optimal control policies for heterogeneous robot swarms. IEEE Transactions
on Robotics 33, 2 (2017), 346–358.

[8] Brian Roberson. 2006. The colonel Blotto game. Economic Theory 29, 1 (2006),

1–24.

[9] Daigo Shishika, Yue Guan, Michael Dorothy, and Vijay Kumar. 2022. Dynamic

defender-attacker blotto game. In 2022 American Control Conference (ACC). IEEE,
4422–4428.

[10] Veniamin Tereshchuk, John Stewart, Nikolay Bykov, Samuel Pedigo, Santosh

Devasia, and Ashis G Banerjee. 2019. An efficient scheduling algorithm for

multi-robot task allocation in assembling aircraft structures. IEEE Robotics and
Automation Letters 4, 4 (2019), 3844–3851.

[11] Yongjun Xu, Guan Gui, Haris Gacanin, and Fumiyuki Adachi. 2021. A Survey on

Resource Allocation for 5G Heterogeneous Networks: Current Research, Future

Trends, and Challenges. IEEE Communications Surveys & Tutorials 23, 2 (2021),
668–695. https://doi.org/10.1109/COMST.2021.3059896

https://doi.org/10.1109/COMST.2021.3059896

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Reachable Sets and Required Sets
	3.1 Reachable Sets
	3.2 Required Set

	4 No-Splitting Attacker
	4.1 K-step Safe Sets
	4.2 Indefinite Defense
	4.3 Q-Set Propagation
	4.4 K-step Strategies

	5 Main Results
	5.1 Generalization to Splitting Attacker

	6 Algorithmic Solution
	7 Numerical Illustrations
	7.1 Q-set Propagation
	7.2 Effect of Edges on CRR
	7.3 Non-integer Resource Ratio

	8 Conclusion
	References

