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ABSTRACT
In multi-agent reinforcement learning (MARL), the uncertainty of
state change and the inconsistency between agents’ local obser-
vation and global information are always the main obstacles of
cooperative multi-agent exploration. To address these challenges,
in this paper, we propose a novel MARL exploration method by
combining surprise minimization and social influence maximiza-
tion. Considering state entropy as a measure of surprise, surprise
minimization is achieved by rewarding the individual’s intrinsic
motivation (or rewards) for coping with more stable and familiar
situations, hence promoting the policy learning. Furthermore, we
introduce mutual information between agents’ actions as a regu-
larizer to maximize the social influence via optimizing a tractable
variational estimation. In this way, the agents are guided to interact
positively with one another by navigating between states that favor
cooperation. We further empirically demonstrate the significant
performance of the proposed exploration method in improving the
cooperative ability of agents in a well known Multi-Agent MuJoCo
environment.

KEYWORDS
Multi-Agent Reinforcement Learning, Exploration, Cooperative
Multi-Agent
ACM Reference Format:
Mingyang Sun, Yaqing Hou, Jie Kang, Yifeng Zeng, and Qiang Zhang. 2023.
Improving Cooperative Multi-Agent Exploration via Surprise Minimization
and Social Influence Maximization. In Proc. of the 22nd International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2023), London,
United Kingdom, May 29 – June 2, 2023, IFAAMAS, 7 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) has to date achieved
excellent success due to its ubiquity of a wide realm of real world
problem domains including crewless aerial vehicles [21], automatic
traffic light control [4], and cooperative robot control [16], etc. Pre-
vious studies on MARL tend to apply single-agent RL algorithms
in multi-agent scenarios and promote independent learning [4] [6].
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However, the algorithms often suffer from non-stationarity during
the learning as they simply treat other learning agents as part of an
environment. To address this issue, recent work has introduced a
centralized training and distributed execution (CTDE) paradigm and
more advanced techniques such as multi-agent deep deterministic
policy gradient (MADDPG) [12], monotonic value function fac-
torization (QMIX) [17], Multi-Agent Proximal Policy Optimization
(MAPPO) [23] and Heterogeneous-Agent Proximal Policy Optimisa-
tion (HAPPO) [10] have been developed. Nevertheless, despite their
excellent performance as reported, the aforementioned methods
still adopt the classical noise-based exploration strategies follow-
ing the single-agent RL methods as a noisy version of the actor
policy [11], e.g., 𝜖-greedy exploration in QMIX and entropy reg-
ularization in MAPPO, hence falling short of taking into account
agents’ interactions in environment exploration and resulting in
slow exploration and sub-optimality [22].

More recent studies have been proposed to solve the challenge of
efficiently exploring unknown environments and gleaning informa-
tive experiences that could benefit the policy learning most towards
optimal ones. For example, MAVEN was proposed to improve ex-
ploration by conditioning an agent’s behavior on a shared latent
variable controlled by a hierarchical policy [13]. Further, Wang [20]
encouraged coordinated exploration by considering the influence
of one agent’s behavior on other agents’ behaviors. However, while
these exploration strategies for MARL obtain promising learning
performance, they suffer from two common issues: (𝑎) the partial
observation and non-stationary problems induce extra difficulty in
the exploration measurement. While individual agents act accord-
ing to their own policies under local observations, they do not share
the same knowledge of environmental states. Furthermore, the be-
haviors and states of individuals can also be influenced by their
counterparts, which induces additional randomness in the learning;
and (𝑏) Even in coordinated exploration, the inconsistency between
local and global information may exist. This demands agents to bal-
ance the learning from both local and global perspective; otherwise,
it may lead to inadequate or redundant exploration. Thus, how to
explore effectively in more general scenarios with information bias
and cooperative dependency among multiple agents remains an
open and challenging research problem.

This paper attempts to take a step towards solving the above
issues. First, we observe that uncertainties in the environment can



keep an agent in an unstable state of change, which is not con-
ducive to exploration and learning. An example was illustrated
in [3], where the environment around an agent is unstable due
to weather changes, and if it builds a shelter and hides in it, al-
though this behavior leads the agent to go through some unfamiliar
states initially, it can reach a stable and predictable state in the
long run. Conversely, if it does not take such measures, then it
will constantly experience unstable states. Therefore, we believe
that explicitly preventing the agents from exploring states with
a high degree of arbitrary uncertainty is an important prerequi-
site for improving the efficiency and robustness of exploration. To
do this, we introduce surprise minimization to cope with unpre-
dictable state changes in multi-agent scenarios. However, if only
surprise is minimized, it is easy for the agents to adopt negative
or conservative policies, which is detrimental to their learning of
cooperative behavior. Cooperative behaviors usually emerge be-
cause there is a lot of interaction between the cooperators. The
decisions of one of the cooperators are influenced by the behaviors
from the other parties, thus facilitating the emergence of effective
cooperation. In multi-agent reinforcement learning, the influence
of an agent’s behavior on the decisions of other individuals is called
social influence [7]. Social Influence Maximization of policies en-
courages agents to interact actively with each other rather than
blindly performing unusual actions, thus enabling them to learn to
cooperate effectively. Therefore, we believe that it is worthwhile
to use global information to maximize social influence and thus
promote more effective interactions between agents. In summary,
this paper proposes a new multi-agent exploration approach with
surprise minimization and social influence maximization, where
surprise minimization and social influence maximization comple-
ment each other and jointly promote cooperative behavior. A more
stable state distribution reduces the range of states involved in
maximizing social influence. Conversely, social influential explo-
ration encourages agents to navigate between the states that favor
cooperation.

In general, we make the following main contributions:

• We propose a novel MARL exploration method by combin-
ing surprise minimization and social influence maximization,
named S2MIA. This new method reduces the impact of state
uncertainty on agent learning and encourages agents to in-
teract for the emergence of cooperative behaviors.

• We consider state entropy as ameasure of surprise. To achieve
surprise minimization, state probabilities in trajectories are
maximized by rewarding the individual’s intrinsic motiva-
tion (rewards) for learning each agent’s policy. Furthermore,
we introduce mutual information between agents’ actions as
a regularizer to maximize the social influence via optimizing
a tractable variational estimation.

• We apply the proposed method to the advanced HAPPO [10]
algorithm and present the implementation in details. We
demonstrate the effectiveness of S2MIA on the Multi-agent
Mujoco environment. Empirical results show S2MIA can
improve the learning by guiding and coordinating agents’
exploration.

The rest of the paper is organized as follows. In Section 2, we de-
scribe the problem formulation, as well as backgrounds of surprise

minimization and exploration in multi-agent reinforcement learn-
ing.

2 PROBLEM FORMULATION AND
BACKGROUNDS

2.1 Surprise Minimization
Surprise can be inferred as a measure of deviation among states
encountered by the agent during its interaction with the environ-
ment [3, 5]. In stable or simplified RL environment, surprise driven
exploration methods have been proposed and mostly focused on
pursuing surprises or satisfying curiosity by means of state vis-
itation counting, measuring prediction error, maximizing action
entropy or state entropy and so on, aiming to obtain richer envi-
ronmental information [22]. However, these methods tend to suffer
from the issue of inefficient sampling [1], particularly in MARL
scenarios with a larger number of agents. On the other hand, sur-
prise minimization is the exact opposite - it expects the agent to
be in a stable state space, hence can understand its surroundings
more efficiently. In model-based reinforcement learning, surprise
minimization helps agents model policies by speeding up the con-
vergence but easily get trapped in local optimum as the agents
tend to make decisions with conservative actions [8]. The surprise
minimization is witnessed as an intrinsic motivation [1] or lifting
generalization problem [5]. [19] uses the free energy to estimate
and minimize surprise jointly across all agents, which is combined
with value decomposition method to explore the promotion effect
of surprise minimization on multi-agent learning. Taking this clue,
this paper introduces surprise minimization to cope with the state
uncertainty or unpredictable state changes in multi-agent scenarios.
Besides, the social influence maximization is further proposed to
encourage the cooperative exploration in the complex multi-agent
learning environment.

2.2 Exploration in MARL
Compared to the success in a single-agent domain, the study on
exploration for MARL is still at the preliminary stage. For example,
from the perspective of uncertainty-oriented exploration, Zhu [24]
proposed Multi-agent Safe Q-Learning using the epistemic uncer-
tainty for exploration in accordance with the optimism principle.
Martin and Sandhom [14] used both the epistemic uncertainty and
aleatoric uncertainty following the similar idea of distributional
value estimation in single-agent RL [2]. These methods only intro-
duce uncertainty for better state-action value estimation and rarely
consider how to balance local and global information to obtain a
robust and accurate uncertainty estimation particularly when local
information is inconsistent with global information.

Intrinsic motivation-oriented exploration is also a promising
direction and is gradually tending to be applied in a multi-agent
domain. Strouse [18]took mutual information of the goal and the
agents’ states or actions in the form of internal rewards as a means
to help the agent learn to hide or share intentions. Wang [20]
measured influence of one agent on other agents’ transition func-
tion (EITI) and rewarding structure (EDTI). These two measures
encouraged agents to visit critical states in the state-action space,



through which agents can transit to potentially important under-
explored regions. Closely related to our work, Jagues [7] also de-
fined the intrinsic reward function by introducing counterfactual
reasoning from the perspective of social influence. By maximizing
this function, agents are encouraged to take actions with the most
strong influence on the policies of other agents through causal
inference or communication. However, circular dependencies and
limited communication will be the main obstacles to the general-
ization of this method to practical applications. In our work, the
variational posterior estimator built by extending the policy net-
work does not have these limitations.

3 OUR METHODS
3.1 Preliminaries
We formulate the fully cooperative multi-agent task as a Dec-
POMDP,which is formally defined as a tuple𝐺 = ⟨𝑆,𝐴, 𝑃, 𝑟,Ω,𝑂, 𝑛,𝛾⟩.
Here, 𝑆 is the finite state space of the environment. At each time step
𝑡 , every agent 𝑖 ∈ 𝑁 ≡ {1, . . . , 𝑛} chooses an action 𝑎𝑖 ∈ 𝐴 which
forms the joint action a ∈ A ≡ 𝐴𝑛 . 𝑃 (𝑠 ′ |𝑠, a) : 𝑆 × A × 𝑆 → [0, 1]
is the state transition function. 𝑟 (𝑠; a) : 𝑆 × A → R is the reward
function shared by all agents and 𝛾 ∈ [0, 1) is the discount fac-
tor. We consider partially observable settings, where an agent only
has access to an observation 𝑜𝑖 ∈ Ω drawn according to obser-
vation function 𝑂 (𝑠, 𝑖) : 𝑆 × 𝑁 → Ω, not its true state 𝑠𝑖 . The
action-observation history for an agent 𝑖 is 𝜏𝑖 ∈ 𝑇 ≡ (Ω × 𝐴)∗
on which it can condition its policy 𝜋𝑖 (𝑎𝑖 |𝜏𝑖 ) : 𝑇 × 𝐴 → [0, 1].
We use 𝒂−𝑖 to denote the action of all the agents other than 𝑖

and follow a similar convention for the policies 𝜋−𝑖 . For a joint
policy 𝝅 , the state-value function and the action-value function
are defined: 𝑉𝝅 (𝑠𝑡 ) = Ea0:∞∼𝝅 ,𝑠1:∞∼𝑃 [

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 |𝑠𝑡 ], 𝑄𝜋 (𝑠𝑡 ; a𝑡 ) =
E𝑠𝑡+1:∞,a𝑡+1:∞ [

∑∞
𝑘=0 𝛾

𝑘𝑟𝑡+𝑘 |𝑠𝑡 , a𝑡 ]. The goal of the problem is to find
the optimal joint policy 𝝅∗ by maximize the expected total reward:

J (𝝅) ≜ E𝜌0,𝝅 ,𝑃 [
∞∑︁
𝑡=0

𝛾𝑡𝑟𝑡 ], (1)

where 𝜌0 represents the initial state distribution, and 𝑠0 ∼ 𝜌0 (𝑠0), 𝑠𝑡+1 ∼
𝑃 (·|𝑠𝑡 , 𝑎𝑡 ), a𝑡 ∼ 𝝅 (𝑠𝑡 ).

We use the centralized training and Decentralized Execution
(CTDE) paradigm, which has recently been widely adopted by
deepMARL, to design effective exploration method for agents.

3.2 Individual Surprise Minimization
The unpredictability of the environment means high entropy of
state, which directly leads to surprises. In the decentralized ex-
ecution mode, especially in partially observable cases, from the
perspective of a single agent, the long term effects of all agents’
actions on its surprise are complex. The change of an agent’s own
state is determined by its own actions and the actions of other
agents. Moreover, the policies from other agents also need to be
taken into account when it is constructing its beliefs about the
future. But the policies of each agent are independent and often
unknown from each other. In the case of limited communication,
an agent cannot accurately know the next action of others, and
it is even more difficult to directly intervene in the decisions of
others. Therefore, surprise is easy to come by when agents behave

in unexpected ways, such as blind exploration. The surprises caused
by this series of reasons make it difficult for the agent to evaluate
whether its behavior is really meaningful.

In this section, we will present our deep RL algorithm for learn-
ing decentralized policies that minimize surprise. Considering the
huge global state space and joint action space, it is difficult to treat
global surprise minimization as a centralized goal. Meanwhile, it is
not entirely appropriate as agents’ actions have different degrees
of impact on the global surprise. Thus, we propose surprise mini-
mization as the individual intrinsic motivation by seeking out low
entropy state distributions.

3.2.1 Surprise Minimization as Intrinsic Rewards. To incorporate
individual surprise minimization into agents’ learning, we design
intrinsic rewards as an embodiment of the extra benefit an agent
gets when it experiences more familiar states, based on the history
of the states it experiences under the current policy. We assume
an agent 𝑖 learns a policy 𝜋𝑖

𝜙
, parameterized by 𝜙 . The goal of sur-

prise minimization is to minimize the entropy of its state marginal
distribution under its current policy 𝜋𝑖

𝜙
at each time step of the

episode. This state entropy can be estimated by fitting an estimate
of the visited state marginal 𝑝𝜋

𝑖
𝜙 (𝑠𝑖𝑡 ) as each step 𝑡 , given by 𝑝𝜃𝑖 (𝑠𝑖𝑡 ),

using the states during the entire episode. For a complete trajectory
𝜏𝑖 = {𝑠𝑖1, . . . , 𝑠

𝑖
𝑡 . . . , 𝑠𝑖

𝑇
}, We can get an upper bound as an estimate

of the sum of the entropy of each state distribution over the whole
episode:

𝑇∑︁
𝑡=0

H(𝑠𝑖𝑡 ) = −
𝑇∑︁
𝑡=0
E
𝑠𝑖𝑡∼𝑝

𝜋𝑖
𝜙 (𝑠𝑖𝑡 )

[log𝑝𝜋
𝑖
𝜙 (𝑠𝑖𝑡 )]

≤ −
𝑇∑︁
𝑡=0
E
𝑠𝑖𝑡∼𝑝

𝜋𝑖
𝜙 (𝑠𝑖𝑡 )

[log 𝑝𝜃𝑖 (𝑠𝑖𝑡 )],

(2)

where the inequality becomes an equality when 𝑝𝜃𝑖 (𝑠𝑖𝑡 ) accurately
models 𝑝𝜋

𝑖
𝜙 (𝑠𝑖𝑡 ). Minimizing the right-hand side of the inequality is

equivalent to a new reinforcement learning maximization objective
with an additional internal reward. This leads to a new reward
function:

𝑟 (𝑠𝑖𝑡 ) = 𝑟 (𝑠𝑖𝑡 ) + 𝛼 log𝑝𝜃𝑖 (𝑠𝑖𝑡 ), (3)
where the coefficient 𝛼 is used to control the proportion of intrinsic
reward. The most basic principle is to put these two reward terms
on a similar magnitude.

3.2.2 Density Estimation. In order to instantiate surprise mini-
mization into MARL algorithms, the sufficient statistics of 𝑝𝑖

𝜃
(𝑠𝑖 ) in

Equation 2 is essential. Considering that the state marginal distri-
bution 𝑝

𝜋𝑖
𝜙 (𝑠𝑖𝑡 ) changes with the update of parameters of 𝜋𝑖

𝜙
, the

distribution 𝑝𝑖
𝜃
(𝑠𝑖 ) also needs to update accordingly. Specifically,

at the 𝑘𝑡ℎ iteration, all agents obtain new policies 𝝅𝜙𝑘 by a policy
gradient algorithm. Next, all agents interact with the environment
according to the policy 𝝅𝜙𝑘 and collect trajectories data to update
into the buffer 𝐷𝑘 . Before the next iteration 𝑘 + 1 begins, for each
agent, the parameters of the sufficient statistics 𝜃𝑖

𝑘
= U(𝐷𝑘 ) are

first recalculated using a maximum likelihood state density estima-
tion process 𝜃𝑖

𝑘
= argmax𝜃𝑖

∑
𝐷𝑘

log𝑝𝜃𝑖 (𝑠𝑖 ) over the experience
within the trajectory buffer 𝐷𝑘 .



In principle, any appropriate model class can be selected ac-
cording to the training environment to estimate the density 𝑝𝜃 (𝑠𝑖 ).
Relatively simple distribution classes, such as products of indepen-
dent marginals, suffice to run our methods in many environments.
As we show in our experiments (see Section 4), 𝑝𝜃 (𝑠𝑖 ) is simply
modeled as an independent Gaussian distribution for each dimen-
sion of the observation. Thus, the formula for the full reward can
be rewritten as:

𝑟 (𝑠𝑖 ) = 𝑟 (𝑠𝑖𝑗 ) − 𝛼
∑︁
𝑗

(log𝜎 𝑗 +
(𝑠𝑖
𝑗
− 𝜇 𝑗 )2

2𝜎2
𝑗

), (4)

where 𝜇 𝑗 and 𝜎 𝑗 are separately calculated as the sample mean
and standard deviation at 𝑗𝑡ℎ dimension of the state space from
trajectory buffer.

However, in more complex environments, when the state of an
agent or the dimensionality of observations (such as images) is large,
it is advisable to employ a more sophisticated density estimator
or utilize some dimensionality reduction and feature extraction
techniques (such as Variational Auto-Encoders [9]).

3.3 Social Influential Exploration
Social influence measures the influence of one agent’s action on
others’ behavior. Actions that lead to relatively higher change in
the other agent’s behavior are considered to be highly influential.
Social influence maximization is related to maximizing the mutual
information (MI) between agents’ actions, and hypothesize that
this inductive bias will drive agents to learn coordinated behavior.

In this section, we introduce social influence as a regularization
term, which stimulates agents to maximize the mutual information
between their actions. This regularization term 𝐼 (𝑖,−𝑖) can be added
the objective function of policy optimization algorithm:

J̃ = J (𝜋𝑖 ) + 𝜆𝐼 (𝑖,−𝑖), (5)

where 𝜆 is used to control the intensity of the social influential
regularization term.

By sampling sufficient joint actions, and averaging the resulting
policy distribution of 𝑖 in each case, we can obtain the marginal
policy of 𝑖 , 𝑝 (𝑎𝑖𝑡 |𝑠𝑖𝑡 ) =

∑
𝒂−𝑖
𝑡
𝑝 (𝑎𝑖𝑡 |𝒂−𝑖𝑡 , 𝑠𝑖𝑡 )𝑝 (𝒂−𝑖𝑡 |𝑠𝑖𝑡 ), that is the de-

centralized policy of 𝑖 without considering the actions of other
agents. The discrepancy between the marginal policy of 𝑖 and the
conditional policy of 𝑖 given −𝑖’s action is a measure of the causal in-
fluence of −𝑖 on 𝑖; it gives the degree to which 𝑖 changes its planned
action distribution because of actions of other agents. The influence
regularization term to the mutual information between the actions
of agents 𝑖 and −𝑖 , which is given by

𝐼 (𝐴𝑖 ;𝐴−𝑖 |𝑠𝑖 ) =
∑︁
a

𝑝 (a|𝑠𝑖 ) log 𝑝 (a|𝑠𝑖 )
𝑝 (𝑎𝑖 |𝑠𝑖 )𝑝 (𝒂−𝑖 |𝑠𝑖 )

=
∑︁
𝒂−𝑖

𝑝 (𝒂−𝑖 |𝑠𝑖 )𝐷𝐾𝐿 [𝑝 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 )∥𝑝 (𝑎𝑖 |𝑠𝑖 )] .
(6)

To maximize the social influence, estimating 𝑝 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 ) is the
main obstacle. By sampling 𝑁 independent trajectories from the
environment, we can perform a Monte-Carlo (MC) approximation

Figure 1: The architecture of policy network. The left is agent
𝑖’s Actor network, which receives the current local observa-
tions 𝑜𝑖𝑡 and the last hidden states ℎ𝑖

𝑡−1. The right is the varia-
tional posterior estimator about 𝑞𝜉 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 ) by building an
actions encoder.

of the MI:

𝐼 (𝐴𝑖 ;𝐴−𝑖 |𝑠𝑖 ) = E𝜏 [𝐷𝐾𝐿 [𝑝 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 )∥𝑝 (𝑎𝑖 |𝑠𝑖 )]]

≈ 1
𝑁

∑︁
𝑛

𝐷𝐾𝐿 [𝑝 (𝑎𝑖 |𝒂−𝑖𝑛 , 𝑠𝑖 )∥𝑝 (𝑎𝑖 |𝑠𝑖 )] . (7)

If the state and action spaces are small, we simply count the
frequencies 𝑁1 (𝑎𝑖 , 𝒂−𝑖 , 𝑠𝑖 ) and 𝑁2 (𝒂−𝑖 , 𝑠𝑖 ) of tuples (𝑎𝑖 , 𝒂−𝑖 , 𝑠𝑖 ) and
(𝒂−𝑖 , 𝑠𝑖 ) separately from the samples, and then calculate their ratios
𝑁1 (𝑎𝑖 ,𝒂−𝑖 ,𝑠𝑖 )
𝑁2 (𝒂−𝑖 ,𝑠𝑖 ) as an accurate estimate of 𝑝 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 ).
Unfortunately, in many multi-agent scenarios, where the prob-

lem space is often large, the amount of memory consumed by MC is
often unrealistic for accurate estimation. As an alternative, for the
mutual information objective, we introduce a variational posterior
𝑞𝜉 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 ) via a neural network with parameters 𝜉 to derive a
tractable lower bound:

𝐼 (𝐴𝑖 ;𝐴−𝑖 |𝑠𝑖 ) ≧
∑︁
𝒂−𝑖

𝑝 (𝒂−𝑖 |𝑠𝑖 )𝐷𝐾𝐿 [𝑞𝜉 (𝑎𝑖 |𝒂−𝑖 , 𝑠𝑖 )∥𝑝 (𝑎𝑖 |𝑠𝑖 )] . (8)

3.4 Implementation Details
In the present study, we incorporate surprise minimization and
social influential regularization into a state-of-the-art MARL algo-
rithm, namely HAPPO [10], as an easy-to-apply exploration tech-
nique. Different from the majority of existing MARL methods, i.e.,
QMIX and MAPPO, HAPPOwas recently proposed as a multi-agent
trust region method and is immune from restriction under parame-
ter sharing and homogeneity of multiple agents which can lead to
a sub-optimal outcome that is exponentially worse with a larger
number of agents [10].

As our interest is placed on solving Decentralized Partially Ob-
servable Markov Decision Processes with Shared Rewards (DEC-
POMDP), different agents merely have access to their local obser-
vations. For simplicity, we use agents’ local observations instead of
fully observable states in intrinsic rewards maximization of Equa-
tion 3. Accordingly, the reward function with surprise minimization
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(f) HalfCheetah 2x3

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

1000

2000

3000

4000

5000

6000

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d

MAPPO
MADDPG
HAPPO
HAPPO-S2MIA

(g) HalfCheetah 3x2
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(h) HalfCheetah 6x1

(i) Ant 2x4
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(k) Ant 4x2

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Ep
iso

de
 R

ew
ar

d

MAPPO
MADDPG
HAPPO
HAPPO-S2MIA

(l) Ant 8x1

Figure 2: (left) Agent partitionings for Multi-Agent MuJoCo environments: Walker [2x3], HalfCheetah [6x1] and Ant [2x4].
Colours indicate agent partitionings. The number is the ID of the controlled joints. (right) Mean performance for multiple
Multi-Agent MuJoCo tasks over 10 runs with a fixed set of seeds, with interquartile ranges shown in shaded areas. The 𝑥-axis
is the number of environmental steps during training; The 𝑦-axis is average episode rewards during testing. HAPPO-S2MIA
outperforms its rivals.

as the intrinsic motivation is then re-formalized as

𝑟 (s𝑡 , 𝑜𝑖𝑡 ) = 𝑟 (s𝑡 ) + 𝛼 log𝑝𝜃𝑖 (𝑜𝑖𝑡 ). (9)

Then, 𝑟 is directly used to estimate the advantage of actions follow-
ing common practices in HAPPO implementations.

Furthermore, as shown in Fig. 1 (left), each agent is assigned
with a policy network as Actor, which uses a GRU as trajectory
encoder to encode the agent’s observation 𝑜𝑖𝑡 and internal stateℎ

𝑖
𝑡−1.

After introducing the social influential regularization, we augment
the initial policy network with an addition policy output head
conditioned a joint action encoder for the agents to estimate 𝑞𝜉 in
Equation 8. During centralized training, the whole policy network
will use the joint action encoder to encode the actions of other
agents 𝒂−𝑖𝑡 , and then through the two output headers to calculate
𝑝 (𝑎𝑖𝑡 |𝑠𝑖𝑡 ) ≈ 𝑝 (𝑎𝑖𝑡 |𝑜𝑖𝑡 , ℎ𝑖𝑡−1) and 𝑞𝜉 (𝑎𝑖𝑡 |𝒂−𝑖𝑡 , 𝑠𝑖𝑡 ) ≈ 𝑞𝜉 (𝑎𝑖𝑡 |𝒂−𝑖𝑡 , 𝑜𝑖𝑡 , ℎ

𝑖
𝑡−1)

simultaneously. Finally, the policy network is trained to maximize

the objective

𝐿̃(𝜃 ) = 𝐿𝐻𝐴𝑃𝑃𝑂 (𝜃 )

+ 𝜆
1
𝐵𝑇

𝐵∑︁
𝑏=1

𝑇∑︁
𝑡=0

𝐷𝐾𝐿 [𝑞𝜉 (·|𝒂−𝑖 , 𝑠𝑖 )∥𝑝 (·|𝑠𝑖 )],
(10)

where 𝐵 is the size of mini-batch and 𝐿𝐻𝐴𝑃𝑃𝑂 represents the origi-
nal optimization objective of HAPPO (details can be seen from [10]).

4 EXPERIMENTAL STUDY
In this section, we conducted a series of experiments to evaluate the
theoretical claims presented by S2MIA along with its performance.



4.1 Experimental Setup
To verify the adaptability of S2MIA, we apply it on Heterogeneous-
Agent Proximal Policy Optimisation (HAPPO) as described in Sec-
tion 3.4. We benchmark HAPPO-S2MIA against other existing state-
of-the-art (SOTA) algorithms, which include MAPPO, MADDPG
and the original HAPPO. Parameter Settings of MAPPO, HAPPO
and MADDPG, such as learning rate, neural network structure
and ppo-clip rate are consistent with previous works. S2MIA addi-
tionally introduces two important parameters, i.e., intrinsic reward
coefficient 𝛼 and regular term coefficient 𝜆. To make the environ-
mental reward and intrinsic reward orders of magnitude close, 𝛼
is set to 0.01. We simply replace HAPPO’s original entropy term
with the social influence regularizer, so the coefficient remains
unchanged at 0.01.

We choose the Multi-Agent MuJoCo [15] as the testbed for its
rich environments and high complexity of control. MuJoCo tasks
challenge a robot to learn an optimal control policy of motion and
Multi-Agent MuJoCo assigns control of each part of the robot to
multiple independent agents. With the increasing variety of the
body parts, it becomes necessary to model heterogeneous policies,
such as in the HalfCheetah [6x1] task shown in Fig. 2(e), where
different agents control different types of joints. This fits perfectly
with our method, as one individual’s intrinsic rewards should not
be involved in the updating of other individuals’ policies.

4.2 Results
We consider a total of 9 tasks in 3 different scenarios, i.e., Walker,
HalfCheetah and Ant, in Multi-Agent MuJoCo to conduct our ex-
periments. The results are shown in Fig. 2. Agents were evaluated
for a total of 10 million environmental steps with the lines in the
plot indicating average episode rewards and the shaded area as
95% confidence interval over 10 independent runs. The plots show
that HAPPO-S2MIA performs substantially better than all rivals
on every control task. Specifically, although HAPPO, as the most
advanced algorithm among them, achieved a significant advantage
in most tasks, the improvement of average episode reward in the
early stage of learning was not satisfactory. For example, in 3 Ant
tasks, we can only observe the obvious learning effect after about
6 million environmental steps. By comparison, the improvement
brought by our explorationmethod S2MIA to HAPPO is particularly
significant. A significant improvement in early learning efficiency
was observed in all tasks. This suggests that under the combined
effects of surprise minimization and social influence maximization,
agents can discover policies that keep the task going more quickly.
The final test result of HAPPO-S2MIA is better than HAPPO, which
also shows that our method can explore better cooperation policies
than simple entropy regularization.

4.3 Ablation Study
To better understand the approach, we perform an ablation study
to verify the effectiveness of social influencial exploration. At the
same time, we test the advantage of social influence regulariza-
tion over HAPPO’s original entropy regularization. For clarity, the
HAPPO using surprise minimization without exploration is called
HAPPO-SM, while based on HAPPO-SM, the algorithm with the
original entropy regularization is called HAPPO-SMH. As Fig. 3
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Figure 3: Comparison of our methods against ablations for
HalfCheetah andWalker. HAPPO-SM refers to theHAPPO al-
gorithm using surprise minimization but without any means
of exploration, while HAPPO-SMH uses the entropy regular-
ization originally used by HAPPO.

shows, although HAPPO can obtain a satisfactory reward growth
in the early stage by introducing surprise minimization, if there
is no exploration, surprise minimization will limit it to learn sub-
optimal policies. After the introduction of entropy regularization
(i.e., HAPPO-SMH), this problem is alleviated to a certain extent,
such as an increase of about 600 average episode rewards in the
Walker task. In addition, if we use our social influence regularization
to replace entropy regularization, the experimental performance
will be significantly improved. For example, in the same Walker
task, HAPPO-S2MIA received about 1000 reward increases com-
pared to HAPPO-SM, and obtained competitive the early learning
performance compared to HAPPO-SMH. This demonstrates that
the interaction between surprise minimization and social influence
maximization can effectively help agents explore better cooperation
policies.



5 CONCLUSION
This paper presents a novel multi-agent exploration method with
surprise minimization and social influence maximization for address-
ing the specific challenges of state uncertainty that arise in coop-
erative multi-agent learning. Superficially, in order to minimize
surprise, a distribution of experienced states is constructed and the
probability of each state is considered an intrinsic reward. This
intrinsic reward makes an agent’s policy more likely to pursue
low state entropy. The surprise minimization is regarded as the
internal motivation of individuals, while the maximization of social
influence is regarded as the common goal across individuals. We
use mutual information between agent actions to measure social
influence and add it as a regularizer to the objective function. And
we design a variational posterior estimator for computing this reg-
ularizer. We evaluated our method over nine complex multi-agent
control tasks on Multi-Agent MuJoCo, and the results show that
the proposed methods increases exploration efficiency.

Although we only apply the proposed method to the HAPPO
algorithm, this exploration method can easily be generalized to
many other MARL algorithms. This work complements current
research on cooperative multi-agent exploration and provides ef-
fective solutions, yet how to deal with the exponential growth of
global state and action spaces are still a open problem.
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