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ABSTRACT
Making Smart Cities more sustainable, resilient and democratic
is emerging as an endeavor of satisfying hard constraints, for in-
stance meeting net-zero targets. Decentralized multi-agent methods
for socio-technical optimization of large-scale complex infrastruc-
tures such as energy and transport networks are scalable and more
privacy-preserving by design. However, they mainly focus on sat-
isfying soft constraints to remain cost-effective. This paper intro-
duces a new model for decentralized hard constraint satisfaction in
discrete-choice combinatorial optimization problems. The model
solves the cold start problem of partial information for coordina-
tion during initialization that can violate hard constraints. It also
preserves a low-cost satisfaction of hard constraints in subsequent
coordinated choices during which soft constraints optimization is
performed. Strikingly, experimental results in real-world Smart City
application scenarios demonstrate the required behavioral shift to
preserve optimality when hard constraints are satisfied. These find-
ings are significant for policymakers, system operators, designers
and architects to create the missing social capital of running cities
in more viable trajectories.
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1 INTRODUCTION
Setting hard constraints in how we consume, produce, distribute
and manage urban resources becomes paramount for the sustain-
ability of our cities [9]. Coordinated responses to climate change
often aim to satisfy hard constraints for carbon footprint emis-
sions and net-zero [29]. Smart Grid technologies are still under
development because of challenges to satisfy hard operational con-
straints that can cause catastrophic power blackouts [24] (see Fig-
ure 1). The satisfaction of hard constraints is also the safeguards for
safety and the social capital for trust in establishing autonomous
self-driving cards at scale [7]. Currently, the complexity, scale and
decentralization of socio-technical infrastructures in Smart Cities
are a barrier for satisfying hard constraints by design. Instead, soft
constraints prevail in the vast majority of optimization and learning
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approaches applied to the broader spectrum of Smart City applica-
tions [13, 18, 22, 25]. This research gap is the focus and subject of
this paper.

Figure 1: An illustrative optimization scenario. Baseline:
Without any optimized demand response, the power peak
causes a blackout. Soft constraints: Significant power peak
reduction that does not though prevent the power blackout.
Hard constraints: Guarantee the reduction of the power peak
below the blackout threshold.

This paper studies the decentralized hard constraint satisfac-
tion in discrete-choice multi-agent optimization, in particular dis-
tributed multi-objective combinatorial optimization problems. This
is a large class of problems [22] in which agents autonomously
determine a number of finite options to choose from (operational
flexibility). The agents may have their own preferences over these
alternatives, expressed with a discomfort cost for each option. How-
ever, such choices often turn out to be inter-dependent to mini-
mize system-wide inefficiency and unfairness costs (non-linear cost
functions) for which the agents may have (explicitly or implicitly)
interest as well. These choices require coordination and computing
the optimal combination of choices in an NP-hard problem [25].
This is especially the case when agents come with different lev-
els of selfish vs. altruistic behavior, with which they prioritize the
minimization of their individual discomfort cost over the collective
inefficiency and unfairness cost. Smart Cities are full of emerging
application scenarios that can be modelled as such optimization
problems [22, 25, 28]: power peak reduction to avoid blackouts,
shift of power demand to consume more available renewable en-
ergy resources, coordinated vehicle routing to decrease travel times,
traffic jams and air pollution, coordinated swarms of Unmanned
Aerial Vehicles (UAVs) for distributed sensing, load-balancing of
bike sharing stations, and other.

So far, heuristics for solving these distributed multi-agent opti-
mization problems mainly address soft constraints, which is the
best effort to minimize all involved costs. This is because in the
absence of complete information in the agents, it is simpler to de-
sign algorithms that search efficiently for good solutions even if
these are not the optimal ones. Instead, satisfying hard constraints
opens up a Pandora box: without full information, any autonomous
agent choice can violate the hard constraints that can only be sat-
isfied with certainty at an aggregate level. Letting agents make



conservative choices to avoid violating the hard constraints may
significantly downgrade performance and optimality, while any
rollback of choices violating these constraints is complex and costly.

To address this timely problem with impact on Smart Cities,
a new decentralized hard constraint satisfaction model is intro-
duced. The model constructs ranges of upper and lower bounds
within which the aggregate choices and costs must remain, while
optimizing for soft constraints. To solve the cold start problem in
the initialization phase during which agents choices and costs are
undergoing aggregation, a heuristic is introduced for the agents
to make choices with the highest average likelihood to satisfy all
hard constraints. As this heuristic is sensitive to the agents’ self-
organization (order) in decision-making and aggregation, agents
keep reorganizing themselves after violations of hard constraints
as long as a stopping criterion is not reached. After the cold start
phase and after agents successfully satisfy the hard constraints,
they can shift entirely to the optimization of the soft constraints
while preserving the satisfaction of the hard constraints locally
with a low cost.

The proposed model is integrated into a collective learning al-
gorithm, the Iterative Economic Planning and Optimized Selections
(I-EPOS) [25]. This allows a comprehensive assessment of the de-
centralized hard constraint satisfaction model and its impact on
the optimality of the soft constraints. For the first time, experi-
mental evaluation with real-world data from Smart City scenarios
disentangle the performance sacrifice as a result of satisfying hard
constraints and the additional agents’ altruism level required to
mitigate such sacrifice. These findings are highly revealing for
system operators, policymakers, system designers and architects.
They can inform them about the additional social capital (incen-
tives/rewards) that they require to build (and pay) to preserve the
cost-effectiveness of socio-technical infrastructures operating with
hard constraints.

The contributions of this paper are summarized as follows: (i) A
model of decentralized hard constraint satisfaction on optimizing
aggregate agents’ choices and their aggregate costs. (ii) The instan-
tiation of this model on a decentralized multi-objective combinato-
rial optimization algorithm of collective learning for multi-agent
systems. (iii) The applicability of decentralized hard constraint sat-
isfaction on three Smart Cities scenarios using real-world data:
energy, bike sharing and UAVs swarm sensing. (iv) Insights about
the optimality sacrifice as moving from soft to hard constraints
and how this optimality loss is measured in terms of the required
behavioral shift to preserve performance, i.e. restoring altruism
deficit. (v) An open-source software artifact implementation of the
model for the I-EPOS collective learning algorithm [16].

This paper is summarized as follows: Section 2 reviews related
methods. Section 3 introduces the decentralized hard constraint sat-
isfaction model. Section 4 illustrates the applicability of this model
to the collective learning algorithm of I-EPOS and its implementa-
tion. Section 5 illustrates the experimental methodology and the
evaluation. Section 6 concludes this paper and outlines future work.

2 COMPARISON TO RELATEDWORK
We study a discrete-choice distributed multi-objective optimization
problem formulti-agent systemswith both soft and hard constraints.

In such systems, most related optimization approaches [12] operate
as partially observable systems with agents communicating with
their neighbors.

There are approaches that rely on an asynchronous hierarchical
process using depth-first search to order agents that communicate
with their parents to make choices and optimize objective func-
tions [2]. Mailler et al. [15] cluster agents based on the constraints
they attempt to satisfy, with a central controller that uses a branch
and bound paradigm for searching solutions. These hierarchical
approaches suffer from failure risks, performance bottlenecks, and
potential privacy breaches in application scenarios involving sensi-
tive personal data, e.g. location and health data.

Multi-agent reinforcement learning approaches with constraints
on agent choices are earlier studied. For instance, Curran et al. [5]
generate rewards for agents to optimize delay intervals that pre-
vent air traffic congestion with greedy scheduling to implement
hard stop (constraints) for agents when the delay surpasses a limit.
Rollback to previous states (warm restarts) are earlier studied upon
violation of global hard constraints in [20]. Simao et al. [30] learn
non-violated execution by training using datasets containing con-
strained actions of the agents and corresponding global states of
a centrally controlled environment. Even though the execution is
decentralized, the learned model used to provide recommendations
to the agents is an outcome of a centralized computation.

Decentralized and asynchronous versions of population search-
based optimization methods, such as particle swarm optimiza-
tion [1] or ant colony [8] algorithms show a slow convergence
with high communication cost to rollback after violations of hard
constraints, while improving global fitness and local search. This
may slow down online real-time adaptations. Violation of hard
constraints is prevented via message broadcasting that rolls back
all choices made after a violation [2].

Other earlier approaches use tree overlay network structures
for aggregation to aggregate messages from child nodes in form
of hypercubes to reduce the frequency of message exchanges [4, 6,
14]. These methods use dynamic programming approach and thus
storing all solutions increases the size of messages exponentially.

Other highly efficient discrete-choice multi-agent optimization
methods, such as COHDA [11] and EPOS [25], address a large
spectrum of NP-hard combinatorial problems in the domains of
Smart Grids and Smart Cities [10, 18, 22, 26]. COHDA generalizes
well in different communication structures among the agents that
have full view of the systems, while EPOS focuses on hierarchical
acyclic graphs such as trees to perform a cost-effective decision-
making and aggregation of choices. Table 1 compares the design
and efficiency of multi-agent optimization approaches, as well as
how they address soft and hard constraints.

As COHDA shares full information between agents, it has higher
communication cost. The computational cost is lower at global
level for COHDA compared to EPOS because of the agents’ brute
force search to aggregate choices. Both COHDA and EPOS focus
on satisfying soft constraints, like minimizing cost functions that
satisfy balancing (minimum variance and standard deviation [25])
or matching (minimum root mean square error, residual sum of
squares [26]) objectives. However, satisfying global hard constraints
(Table 1) is challenging as agents need to additionally coordinate
for choices, whose potential violations are only confirmed at an



Table 1: Comparison of self adaptive decentralized approaches
Attributes I-EPOS [25] EPOS [21] COHDA [11, 17, 19] H-DPOP [4, 14]
Plan Selection - Autonomy Locally Parent-Level Locally Parent-Level
Computational Cost agent: 𝑂 (𝑝𝑡 ) ; system:

𝑂 (𝑝𝑡 𝑙𝑜𝑔 𝑎)
agent: 𝑂 (𝑝𝑐 ) ; system:
𝑂 (𝑝𝑐 𝑙𝑜𝑔 𝑎)

agent: 𝑂 (𝑝𝑡 ) ; system:
𝑂 (𝑝𝑡 )

agent: 𝑂 (𝑝𝑐 ) ; system:
𝑂 (𝑝𝑐 )

Communication Cost agent: 𝑂 (𝑡 ) ; system:
𝑂 (𝑡 𝑙𝑜𝑔 𝑎)

agent: 𝑂 (𝑝 ) ; system:
𝑂 (𝑝 𝑙𝑜𝑔 𝑎)

agent: 𝑂 (𝑎𝑡 ) ; system:
𝑂 (𝑎𝑡 )

agent: 𝑂 (𝑝𝑐 ) ; system:
𝑂 (𝑝𝑐 )

Information Exchange tree overlay; aggregate in-
formation;

tree overlay; aggregate mes-
sages;

k-connected graph; full in-
formation;

tree overlay; full informa-
tion;

Soft Constraints local (initialization), aggre-
gated choices in global plan

local (initialization), aggre-
gated choices in global plan

global no soft constraints

Hard Constraints local (initialization) local (initialization) local (initialization), global local (initialization), global
𝑝 : number of plans (options), 𝑡 : number of iterations, 𝑐 : number of children, 𝑎: number of agents

aggregate level, which makes any rollback of choices to avoid viola-
tions particularly complex. An expensive rollback procedure earlier
introduced in COHDA [17] performs complete rescheduling using
a 0-1 multiple-choice combinatorial to find another solution that
satisfy the constraints.

Summarizing, satisfaction of hard constraints during initializa-
tion phase, when agents accumulate information about other agents’
choices (cold start problem) remains an open challenge. It is also
unclear how the satisfaction of hard constraints degrades the perfor-
mance of these efficient algorithms based on their soft constraints.
Addressing these open questions is the focus of this paper.

3 HARD CONSTRAINT SATISFACTION MODEL
This section introduces the general optimization problem and the
decentralized hard satisfaction model.

3.1 Optimization problem
Table 2 summarizes the mathematical symbols of this article. As-
sume a socio-technical systems of 𝑛 users, each assisted by a soft-
ware agent, i.e. a personal digital assistant. Each agent 𝑖 has a num-
ber of 𝑘 options to choose from. Each option 𝑗 is referred to as a
possible plan, which is a sequence of real values 𝑝𝑖, 𝑗 = (𝑝𝑖, 𝑗,𝑢 )𝑚𝑢=1 ∈
𝑃𝑖 = (𝑝𝑖, 𝑗 )𝑘𝑗=1,∀𝑖 ∈ {1, ..., 𝑛}. Each agent selects one and only one
plan 𝑝𝑖,𝑠 , which is referred to as the selected plan (i.e. the agent’s
choice). All agents’ choices aggregate element-wise to the collective
choice, the global plan 𝑔 = (𝑔𝑢 )𝑚𝑢=1 =

∑𝑛
𝑖=1 𝑝𝑖,𝑠 of the multi-agent

system. A possible plan of an agent may represent a resource sched-
ule or allocation, e.g. the energy consumed over time or the energy
consumed from a certain supplier. Multiple possible plans for each
agent represent alternatives and its operational flexibility. In the
example of energy, the global plan represents the total energy con-
sumption in the system over time or suppliers (see Figure 1).

Agents’ choices are made based on different, often opposing
criteria. Each agent has its individual preferences over the possi-
ble plans, measured by the discomfort cost 𝑓D (𝑝𝑖, 𝑗 ) = 𝐷𝑖, 𝑗 of each
plan 𝑗 , which also makes the mean discomfort cost in the system
𝑓D (𝑝1,𝑠 , ..., 𝑝𝑛,𝑠 ) = 1

𝑛 · ∑𝑛
𝑖=1 𝑓D (𝑝𝑖,𝑠 ). Each agent can make inde-

pendent choices to minimize their own discomfort cost. However,
agents may also have interest to satisfy the following two general-
purpose collective criteria: inefficiency cost 𝑓I (

∑𝑛
𝑖=1 𝑝𝑖,𝑠 ) = 𝐼𝑖 and

unfairness cost 𝑓U (𝐷1,𝑠 , ..., 𝐷𝑛,𝑠 ) = 𝑈𝑖 . If these cost functions are
non-linear, meaning the choices of the agents depend on each other,

Table 2: Mathematical notations used in this paper.
Notation Meaning
𝑛 Number of agents
𝑃𝑖 Set of possible plans for agent 𝑖
𝑚 Plan size
𝑘 Number of plans
𝑝𝑖,𝑗 ⊂ R𝑚 The 𝑗𝑡ℎ plan as sequence of𝑚 elements of agent 𝑖
𝑝𝑖,𝑠 Selected plan of agent 𝑖
𝑔 =

∑𝑛
𝑖=1 𝑝𝑖,𝑠 Global plan from selected plans of all 𝑛 agents

𝛽𝑖 Discomfort factor for agent 𝑖
𝛼𝑖 Unfairness factor for agent 𝑖
𝑟 Constraints satisfaction rate
𝐼 Inefficiency cost
𝐷 Discomfort cost
𝑈 Unfairness cost
𝑓D : R𝑚 → R Discomfort cost function
𝑓I : R𝑚 → R Inefficiency cost function
𝑓U : R𝑚 → R Unfairness cost function
U ⊂ R𝑚 Sequence of upper bound hard constraints
L ⊂ R𝑚 Sequence of lower bound hard constraints
E(𝑝𝑖,𝑗 ,U) Expected satisfaction for upper bound constraints
E(𝑝𝑖,𝑗 , L) Expected satisfaction for lower bound constraints

the satisfaction of soft constraints, i.e. minimizing the inefficiency
and unfairness cost, is a combinatorial NP-hard optimization prob-
lem [25]. Balancing (e.g. min variance) and matching objectives (e.g.
min residual of sum squares) are examples for measuring ineffi-
ciency cost with a broad applicability in load-balancing application
scenarios of Smart Cities: minimizing power peaks, shifting de-
mand to times with high availability of renewable energy resources,
rerouting vehicles to avoid traffic jams, etc. Table 3 show such a case,
in which three agents have two options (plans). These plans may
represent energy consumption choices while forming an optimal
global plans that meets the available energy supply. The elements
may signify the power consumption for the day and night. The
agents choose plans with minimum dispersion between elements
(soft constraints), but that leads to a suboptimal global plan of
[7,13]. The global plan should also come with lower dispersion. The
variance of the discomfort costs over the population of agents can
measure the unfairness cost. Satisfying all of these (opposing) objec-
tives depends on the selfish vs. altruistic behavior of the agents, e.g.
whether they accept a plan with a bit higher discomfort cost to de-
crease inefficiency or unfairness cost. We can observe this in Table 3.
If Agent C selects a plan ([6,2]) with higher energy requirement
during the day, it achieves to minimize the inefficiency cost and an
optimum global plan of [10,10] is achieved. Such multi-objective



trade-offs are modelled with the parameters 𝛼𝑖 and 𝛽𝑖 such that:

𝑝𝑖,𝑠 =
𝑘

𝑎𝑟𝑔𝑚𝑖𝑛
𝑗=1

(1 − 𝛼 − 𝛽) · 𝑓I (𝑝1,𝑠 + ... + 𝑝𝑖, 𝑗 + ... + 𝑝𝑛,𝑠 )

+ 𝛼 · 𝑓U (𝐷1,𝑠 , ..., 𝐷𝑖, 𝑗 , ..., 𝐷𝑛,𝑠 )
+ 𝛽 · 𝑓D (𝐷1,𝑠 , ..., 𝐷𝑖, 𝑗 , ..., 𝐷𝑛,𝑠 ) .

(1)

From the above equation, it is apparent that the choice of a plan
cannot be easily optimized without (i) information of the other
agents’ choices and (ii) coordination of the agents’ choices for non-
linear cost functions that depend on each other. The optimization
heuristics (Section 2) address the satisfaction of such soft constraints
via various sequential information exchange, information aggrega-
tion and communication schemes that coordinate agents’ choices.
See the baseline scenario of soft constraints in Table 3.

However, introducing hard constraints on the aggregated choices
𝑔 and their costs 𝐷𝑖, 𝑗 , 𝐼𝑖 , 𝑈𝑖 is challenging. This is because there is
no guarantee to satisfy the hard constraints in the absence of full
information, which is usually the case for decentralized heuristics
that require time to converge to full information. This is a particular
cold start problem of initialization/exploration, during which the
first choices are made under high uncertainty. As choices with high
likelihood of violating hard constraints add up incrementally, it be-
comes increasingly hard to discover choices that will prevent such
violations. Hence, agents need different and more conservative se-
lection criteria that prioritize hard over soft constraints. Designing
and evaluating these criteria is a contribution of this paper.

3.2 A heuristic for satisfying hard constraints
The heuristic for satisfying the hard constraints on aggregate choices
and their costs is illustrated in this section. Table 3 also illustrates
an example of applying the heuristic in practice.
3.2.1 Constraints on aggregate choices. For each element 𝑔𝑢 of a
global plan𝑔, a hard constraint is defined by a range (envelope) of an
upperU = (U𝑢 )𝑚𝑢=1 and lower L = (L𝑢 )𝑚𝑢=1 bound, whereU, L
are also sequences of real values of equal size |U| = |L| = |𝑔 | =𝑚.
Each value 𝑢 of the upper bound denotes that U𝑢 ≥ 𝑔𝑢 , whereas
for the lower bound it holds that L𝑢 ≤ 𝑔𝑢 .

The selected plan expected to satisfy all hard constraints at the
initialization phase, during which the aggregate choices (global
plan 𝑔) are not known, is estimated as follows:

𝑝𝑖,𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑝𝑖,𝑗 ∈𝑃𝑖

E(𝑝𝑖, 𝑗 ,U,L), (2)

where the expectation of satisfaction is given by:

E(𝑝𝑖, 𝑗 ,U,L) =
𝑚∑︁
𝑢=1

(U𝑢 − 𝑝𝑖, 𝑗,𝑢 ) +
𝑚∑︁
𝑢=1

(𝑝𝑖, 𝑗,𝑢 − L𝑢 ) . (3)

3.2.2 Constraints on aggregate costs. The modeling for the hard
constraints on the aggregate costs is exactly the same as the one
of the aggregate choices, where the expected satisfaction for each
of the costs of 𝑓D (𝑝1,𝑠 , ..., 𝑝𝑛,𝑠 ), 𝑓I (

∑𝑛
𝑖=1 𝑝𝑖,𝑠 ) and 𝑓U (𝐷1,𝑠 , ..., 𝐷𝑛,𝑠 )

is calculated for upper and lower bounds with |U| = |L| = 1.

3.2.3 Constraint satisfaction rate. The effectiveness of the hard
constraint satisfaction heuristic is measured by the satisfaction rate
(𝑟 ). This is the total number of satisfactions achieved out of a total
number of trials made. These trials are often existing parameters
of the optimization algorithms, for instance, random repetitions, or

the order with which agents aggregate choices made to coordinate
and optimize their own choices.

4 HARD CONSTRAINTS IMPLEMENTATION
The model of decentralized hard constraint satisfaction is imple-
mented and integrated into the I-EPOS collective learning algo-
rithm1 [25]. I-EPOS solves a large class of optimization problems,
as formalized in Section 3.1. It is chosen due to its large spectrum of
applicability in Smart City scenarios [22] as well as its superior per-
formance in satisfying soft constraints [25]. Efficient coordinated
choices are made using a self-organized [21] tree topology within
which agents organize their interactions, information exchange
and decision-making. I-EPOS benefits from the fact that trees are
acyclic graphs: communication cost is very low and all exchanges
in I-EPOS are at an aggregate level without double-counting. The
coordination is a result of a more informed decision-making: each
agent makes a choice taking into account the choices of a group of
other agents (the tree branch underneath during initialization) or
the choices of all agents at a previous time point (after initialization).
Coordination evolves in multiple learning iterations, each consist-
ing of a bottom-up and top-down phase. During the bottom-up phase,
each agent chooses based on the new choices of the agents below
and the choices of all agents in the previous iteration. However,
each agent has an information gap: It has no information about the
subsequent choices of the agents above in the tree. This problem
is solved during the top-down phase, in which agents roll back
(back propagation) to choices of the previous iteration as long as no
costs reduction is achieved. Further information about the design
of the I-EPOS collective learning algorithm is out of the scope of
this paper and can be found in earlier work [25].

The decentralized hard constraint satisfaction model is imple-
mented by filtering out the possible plans in Equation 1 that violate
the given upper and lower bounds. However, in the first learning
iteration, it is not possible determine these plans that violate the
hard constraints with certainty because each agent only knows
about the aggregate choices of the agents underneath (and not the
ones above). As a result, the root agent may end up having no pos-
sible plan that does not violate the hard constraints. To prevent the
likelihood of these violations, the agents make more conservative
choices according to Equation 2 during the first iteration, aiming at
maximizing the expected satisfaction of the hard constraints. Once
the hard satisfactions are satisfied, the agents switch back to plan
selection according to Equation 1, while keep filtering plans that
violate the hard constraints. The agents cannot violate the hard
constraints in these subsequent learning iterations because they
always have the option to roll back to the choices made at the end
of the first learning iteration during which hard constraints are
satisfied (via the top-down phase).

Figure 2 illustrates the implementation of the hard constraints
model on the open-source I-EPOS software artifact [16]. The imple-
mentation of the cost function interfaces is extended to filter out
plans that violate the hard constraints, as well as the selection based
on the expected satisfaction principle of Equation 2. The hard con-
straints are controlled via the main input parameter file of I-EPOS
(Java Properties). Constraints on aggregate choices and costs can

1Available at: https://github.com/epournaras/EPOS.

https://github.com/epournaras/EPOS


Table 3: An example of a discrete-choice combinatorial optimization problem with three agents (𝑛 = 3), each with two plans
(𝑘 = 2,𝑚 = 2). All combinations of possible plan selections make 23 = 8 possible global plans. Hard constraints with an upper
bound on the aggregate choices (global plan 𝑔) are introduced with an expected satisfaction of

∑𝑚
𝑢=1 (U𝑢 −𝑝𝑖, 𝑗,𝑢 ). (1) The baseline

scenario is the soft constraints that minimize the inefficiency cost 𝑓I (𝑔) ≈ |𝑔𝑖, 𝑗,1 − 𝑔𝑖, 𝑗,2 |. The global plan [10, 10] is the one with
the minimum inefficiency cost. (2) Agents choose plans that maximize the expected satisfaction. This results in the global plan
of [6, 15] that satisfies the hard constraintU = [9, ]. (3) Similarly, the hard constraintU = [, 9] is satisfied with the global plan
of [14, 9]. (4) Both new hard constraints U = [10, 13] are satisfied with the global plan [7, 13]. (5) The second hard constraint
U = [9, 9] is violated by the selected global plan [7, 13].

√
: constraint satisfaction; ×: constraint violation in 𝑔

Constraints Agent A Agent B Agent C All Possible Global Responses

Agents’ Plans (𝑝) [3, 5] [2, 7] [1, 3] [5, 2] [6, 2] [3,5] [10,10] [14,9] [7,13] [11,12] [9,12] [13,11] [6,15] [10,14]

1. Soft Constraints (Baseline)
Minimize Inefficiency Cost |3-5| = 2 |2-7| = 5 |1-3| = 2 |5-2| = 3 |6-2| = 4 |3-5| = 2

Selected Plans

Selected Global Plan

2. Hard Constraints - U = [9, ]
Maximize Expected satisfaction (9-3)+0=6 (9-2)+0=7 (9-2)+0=7 (9-5)+0=4 (9-6)+0=3 (9-3)+0=6

Selected Plans

Selected Global Plan

3. Hard Constraints - U = [, 9]
Maximize expected satisfaction 0+(9-5)=4 0+(9-7)=2 0+(9-3)=6 0+(9-2)=7 0+(9-2)=7 0+(9-5)=4

Selected Plans

Selected Global Plan

4. Hard Constraints - U = [10,13]
Maximize expected satisfaction (10 - 3)+ (10 - 2)+ (10 - 1)+ (10 - 5)+ (10 - 6)+ (10 - 3)+

(13 - 5)=15 (13 - 7)=14 (13 - 3)=19 (13 - 2)=17 (13 -2)=15 (13 - 5)=15

Selected Plans

Selected Global Plan

5. Hard Constraints - U = [9,9]
Maximize expected satisfaction (9 - 3)+ (9 - 2)+ (9 - 1)+ (9 - 5)+ (9 - 6)+ (9 - 3)+

(9 - 5)=10 (9 - 7)=9 (9 - 3)=14 (9 - 2)=11 (9 - 2)=10 (9 - 5)=10

Selected Plans

Selected Global Plan ×

be activated and deactivated. Two input .csv files are introduced,
one for each type of hard constraints. Both contain the upper/lower
bounds and the coding of the operators.

Figure 2: Implementation of decentralized hard constraints
satisfaction in I-EPOS [16].

5 EXPERIMENTAL EVALUATION
Table 4 illustrates the application scenarios and settings of the ex-
perimental evaluation. A number of 1000 agents run the I-EPOS
collective learning algorithm [25]. They are self-organized [21] in a
height-balanced binary tree. The algorithm repeats 200 times, each
time with a different random positioning of the agents in the tree.
This introduces different decision-making order with which agents
coordinate their optimized choices. At each repetition, the algo-
rithm runs for 40 iterations, which is usually sufficient for conver-
gence [25]. Evaluation is performed in three Smart City application

scenarios: (i) energy demand-response, (ii) bike sharing and (iii)
UAV swarm sensing. The optimized inefficiency cost function and
the generation of plans are also outlined in Table 4.

Table 4: I-EPOS [25] parameterization for the three datasets.
Parameter Energy Bike Sharing UAV Swarm
Num. of agents (𝑛) 1000 1000 1000
Num. of plans (𝑘) 10 1 to 24 64
Plans size (𝑚) 144 98 64
Num. of repetitions 200 200 200
Num. of iterations 40 40 40
Inefficiency cost 𝑓I Min VAR Min VAR Min RMSE

5.1 Smart City application scenarios
Energy demand-response. This dataset is based on energy disag-
gregation of the simulated zonal power transmission in the Pacific
Northwest Smart Grid Demonstrations Project [23, 26]. It contains
5600 consumers with their energy demand recorded every 5 min in
a 12h span of a day. The goal is to perform power peak shaving to
prevent blackouts [25] by minimizing the variance.
Bike sharing . The Hubway Data Visualization Challenge dataset
consists of the trip records of the Hubway bike sharing system in
Paris [23, 25]. The data contain 2300 users, each with a varying
number of possible plans for the bike stations from which bikes are
picked up or returned (98 stations in total). The goal is to keep the
bike sharing stations load balanced by minimizing the variance of
the global plan.



(a) U𝑢 = 1388, L𝑢 = 1386, 𝑟 = 0.655, 𝐼 =

0.1006.
(b) U𝑢 = 1387.7, L𝑢 = 1386.2, 𝑟 = 0.335,
𝐼 = 0.1032.

(c) U𝑢 = 1387.6, L𝑢 = 1386.4, 𝑟 = 0.07,
𝐼 = 0.1051.

Figure 3: Optimization under soft and three levels of hard constraints in the energy demand-response scenario. Light-grey
shaded areas represent the upper bound and dark-grey shaded areas the lower bound. Arrows point to violations of hard
constraints.

(a) U𝑢 = 3, L𝑢 = −3, 𝑟 = 0.56, 𝐼 = 0.7220. (b) U𝑢 = 2, L𝑢 = −2, 𝑟 = 0.155, 𝐼 = 0.6793. (c) U𝑢 = 1, L𝑢 = −2, 𝑟 = 0.045, 𝐼 = 0.4328.

Figure 4: Optimization under soft and three levels of hard constraints in the bike sharing scenario. Light-grey shaded areas
represent the upper bound and dark-grey shaded areas the lower bound. Arrows point to violations of hard constraints.

(a) U𝑢 = 800, L𝑢 = 2200, 𝑟 = 1, 𝐼 = 7.9950. (b) U𝑢 = 600, L𝑢 = 2400, 𝑟 = 0.58, 𝐼 =

8.0561.
(c) U𝑢 = 400, L𝑢 = 2500, 𝑟 = 0.055, 𝐼 =

8.7810.

Figure 5: Optimization under soft and three levels of hard constraints in the UAV swarm sensing scenario. Light-grey shaded
areas represent the upper bound and dark-grey shaded areas the lower bound. Arrows point to violations of hard constraints.

UAV swarm sensing. The dataset contains 1000 drones that can
capture images or videos of vehicle traffic information on public
roadways over 64 areas of interest (sensing cells) that are uniformly
distributed in the city map [23, 27]. Drones aim to collect the re-
quired amount of sensing data (target plan) determined by a con-
tinuous kernel density estimation, for instance, monitoring cycling
risk based on past bike accident data [3].

5.2 Hard constraint satisfaction works
For each application scenario, three incremental levels of hard con-
straints are set to the aggregate choices (global plan 𝑔). These levels
are quantiles chosen empirically by observing the median global
plan after several executions of I-EPOS based on soft constraints.

The agents are assumed here altruistic, such that: 𝛽𝑖 = 0, 𝛼𝑖 =

0,∀𝑖 ∈ {1, ..., 𝑛}.
In the scenario of energy demand-response, hard constraints

based on upper and lower bounds may represent an envelope of
operation within which demand does not cause a blackout. In the
scenario of bike sharing, hard constraints may represent limits on
incoming or outgoing bikes that infrastructure operators may have,
e.g. parking capacity. In the scenario of UAV swarm sensing, an
upper bound of hard constraints may represent privacy-sensitive
areas or regulated no-fly zones for drones. In contrast, a lower
bound may represent minimal information required to monitor
effectively a phenomenon, e.g. a forest fire or traffic jam.
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(a) Energy demand-response.
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(b) Bike sharing.
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(c) UAV swarm sensing.

Figure 6: Inefficiency and discomfort cost as a function of the altruism level for soft and hard constraints for the three Smart
City application scenarios.
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(a) Energy demand-response.
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(b) Bike sharing.
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(c) UAV swarm sensing.

Figure 7: Required behavioral shift to mitigate the performance degrade of satisfying hard constraints for the three Smart City
application scenarios. The satisfaction rate is also shown for each scenario. Performance comparison: 𝛽 of soft constraints vs. 𝛽
of hard constraints and satisfaction rate.

Figures 3, 4 and 5 show the global plans for the soft constraint
(baseline) along with three incremental and alternating levels of
hard constraints (upper/lower bounds). Under soft constraints, the
upper and lower bounds are violated, whereas hard constraints
prevent these violations. Stricter hard constraints prevent more vi-
olations, however, the satisfaction rate (𝑟 ) drops significantly, while
the inefficiency cost increases. This shows that strict hard con-
straints are likely to oppose the soft constraints. Last but not least,
note that the scenario of UAV swarm sensing allows the satisfac-
tion of a larger number of hard constraints, while preserving high
satisfaction rates. This is because the agents have more operational
flexibility by generating a larger number of plans (64>24>10).

5.3 Behavior shift can mitigate hard constraints
Satisfying hard constraints results in a degrade of the performance
profile (lower inefficiency cost) achieved under soft constraints.
The recovery from this degrade is measured here as the required
social capital (behavioral shift) that agents need to offer such that
soft and hard constraints have equivalent performance. The raise
of social capital is measured by the reduction of the mean 𝛽𝑖 value
in the population of agents that makes them more altruistic, see
Equation 1. The following method is introduced to measure the
behavioral shift: (1) Perform parameter sweep on I-EPOS under soft
constraints for 𝛽𝑖 = 0, to 𝛽𝑖 = 1,∀𝑖 ∈ {1, ...𝑛} with a step of 0.025.
(2) For each I-EPOS execution in Step 1 with a 𝛽𝑖 value, a discomfort
cost𝐷 and an inefficiency cost 𝐼 , run I-EPOS under a hard constraint
on the mean discomfort cost with an upper bound value equals

to 𝐷 (the one of the I-EPOS execution under soft constraints). (3)
Derive the increased inefficiency cost under the hard constraint on
the discomfort cost. (4) Find the 𝛽𝑖 value from Step 1 that has the
closest inefficiency cost with the one derived in Step 3 under the
hard constraint and (5) Compare the two 𝛽𝑖 values in Step 2 and
4. The difference represents the required mean behavioral shift to
mitigate the performance degrade of hard constraints.

Figure 6 illustrates the inefficiency and discomfort cost as a func-
tion of 𝛽𝑖 under soft and hard constraints and the three different
application scenarios. It becomes apparent that hard constraints
require a minimum and significant level of altruism, otherwise, in-
efficiency cost rapidly explodes, especially in the scenarios without
significant operational flexibility. This is also the reason why the
discomfort cost becomes easier to reduce in the scenario of UAV
swarm sensing, which comes with higher operational flexibility.

Figure 7 shows the required behavior shift to restore the perfor-
mance loss as a result of satisfying hard constraints. For energy
demand-response, the agents need on average 44.29% higher al-
truism under hard constraints to meet the performance of the soft
constraints. The bike sharing scenario suggests an almost complete
shift from selfish to altruistic behavior. Strikingly, the scenario of
UAV swarm sensing shows performance gain as a result of satisfy-
ing hard constraints. As the number of plans is significantly higher
for the UAV dataset, the search space is larger, which affects the
optimality of the collective iterative learning paradigm in I-EPOS.

The satisfaction rate for the energy demand-response (Figure 7(a)),
bike sharing (Figure 7(b)) and UAV swarm sensing (Figure 7(c)) are



54.45%, 19.44% and 61.21% respectively. For 𝛽 ≤ 0.475 and 𝛽 ≤ 0.25,
the satisfaction rate is 100% for the UAV swarm sensing and energy
demand-response respectively. The operational flexibility by higher
number of possible plans increases the constraints satisfaction rate.

6 CONCLUSION AND FUTUREWORK
To conclude, this paper shows that the decentralized satisfaction of
global hard constraints is feasible. It is a significant enabler for sus-
tainability and resilience in several Smart City application scenarios
such as energy demand-response to avoid blackouts, load balancing
of bike sharing stations to make more accessible low-carbon trans-
port modalities as well as improved sensing quality and efficiency
by swarms of energy-constrained drones. Results show that hard
constraints can be easily violated when optimizing exclusively for
soft constraints. Instead, the proposed model prevents to a very
high extent such violations.

Results also reveal the performance cost when hard constraints
are introduced and how this cost can be mitigated by a behavioral
shift towards a more altruistic behavior that sacrifices individual
comfort for collective efficiency. These findings are invaluable for
informing policy makers and systems operators of the required
social capital that they need to raise to satisfy ambitious policies
such as net-zero.

The open-source software artifact implementation of the pro-
posed model to the I-EPOS collective learning algorithm is a mile-
stone to encourage further research and application scenarios based
on decentralized hard constraint satisfaction. Future work includes
the applicability of the model to other decentralized optimization
algorithms. The proposed heuristic is designed to satisfy all hard
constraints together, which may be a limitation for high numbers
of such opposing constraints, i.e. sacrifice of optimality and low
satisfaction rates. Instead, a more incremental (and possibly par-
tial) satisfaction of the hard constraints is part of future work. The
further understanding of how to recover missing social capital to
preserve both efficiency and fairness is also subject of future
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